218 research outputs found

    Phaeocystis antarctica unusual summer bloom in stratified antarctic coastal waters (Terra Nova Bay, Ross Sea)

    Get PDF
    This study focuses on the potential explanations for a Phaeocystis antarctica summer bloom occurred in stratified waters of Terra Nova Bay (TNB) - which is part of the Antarctic Special Protected Area (n.161) in the Ross Sea - trough a multi-parameter correlative approach. Many previous studies have highlighted that water column stratification typically favors diatom dominance compared to the colonial haptophyte P. antarctica, in the Ross Sea, and this correlation has often been used to explain the historic dominance of diatoms in TNB. To explore the spatial and temporal progression of P. antarctica bloom in coastal waters, four stations were sampled three times each between December 31, 2009 and January 13, 2010. Taxonomic and pigment composition of phytoplankton communities, macro-nutrient concentrations and various different indices, all indicated the relative dominance of P. antarctica. Cell abundances revealed that P. antarctica contributed 79% of total cell counts in the upper 25 m and 93% in the lower photic zone. Similarly, a strong correlation was observed between Chl-a and the Hex:Fuco pigment ratio, corroborating the microscopic analyses. Recent studies have shown that iron can trigger colonial P. antarctica blooms. Based on the Hex:Chl-c3 proxy for iron limitation in P. antarctica, we hypothesize that anomalously higher iron fluxes were responsible for the unusual bloom of colonial P. antarctica observed in TNB

    Left ventricular diastolic function in normotensive adolescents with different genetic risk of hypertension.

    Get PDF
    Abnormalities of the diastolic function of the left ventricle are the first sign of cardiac involvement in arterial hypertension. We have studied the diastolic function in a group of normotensive adolescents with confirmed family history of hypertension. M-mode echocardiography was performed in 86 normotensive males aged 14-19 years: 41 sons of at least one hypertensive parent (SHT) and 45 sons of normotensive parents (SNT). Cross-sectional area of the left ventricle and left ventricular (LV) mass index were significantly greater in the SHT than in the SNT group (10.05 +/- 1.84 vs. 8.9 +/- 1.56 cm/m2, p less than 0.01 and 129.3 +/- 296.3 vs. 109.23 +/- 25.7 g/m2, p less than 0.002, respectively). No significant difference between the two groups was observed in the indices of left ventricular diastolic function, except for mitral valve opening rate (463.51 +/- 90.45 in SHT vs. 416.71 +/- 78.84 mm/s in SNT; p less than 0.02). From the analysis of the subgroup of adolescents having left ventricular mass greater than the upper normal value, we observed that they showed mean time of rapid filling significantly longer than SNT: this could represent an early marker of the pathological character of such hypertrophy. Our results suggest that the higher LV mass observed in the SHT is not associated with chamber and myocardial stiffness abnormalities

    Iron limitation of a springtime bacterial and phytoplankton community in the Ross Sea : implications for vitamin B12 nutrition

    Get PDF
    © The Author(s), 2011. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums. The definitive version was published in Frontiers in Microbiology 2 (2011): 160, doi:10.3389/fmicb.2011.00160.The Ross Sea is home to some of the largest phytoplankton blooms in the Southern Ocean. Primary production in this system has previously been shown to be iron limited in the summer and periodically iron and vitamin B12 colimited. In this study, we examined trace metal limitation of biological activity in the Ross Sea in the austral spring and considered possible implications for vitamin B12 nutrition. Bottle incubation experiments demonstrated that iron limited phytoplankton growth in the austral spring while B12, cobalt, and zinc did not. This is the first demonstration of iron limitation in a Phaeocystis antarctica-dominated, early season Ross Sea phytoplankton community. The lack of B12 limitation in this location is consistent with previous Ross Sea studies in the austral summer, wherein vitamin additions did not stimulate P. antarctica growth and B12 was limiting only when bacterial abundance was low. Bottle incubation experiments and a bacterial regrowth experiment also revealed that iron addition directly enhanced bacterial growth. B12 uptake measurements in natural water samples and in an iron fertilized bottle incubation demonstrated that bacteria serve not only as a source for vitamin B12, but also as a significant sink, and that iron additions enhanced B12 uptake rates in phytoplankton but not bacteria. Additionally, vitamin uptake rates did not become saturated upon the addition of up to 95 pM B12. A rapid B12 uptake rate was observed after 13 min, which then decreased to a slower constant uptake rate over the next 52 h. Results from this study highlight the importance of iron availability in limiting early season Ross Sea phytoplankton growth and suggest that rates of vitamin B12 production and consumption may be impacted by iron availability.This research was supported by NSF grants OCE-0752291, OPP-0440840, OPP-0338097, OPP-0338164, ANT-0732665, OCE-0452883, and OCE-1031271, the Center for Microbial Oceanography Research and Education (CMORE) and a National Science Foundation (NSF) Graduate Research Fellowship (2007037200) and an Environmental Protection Agency STAR Fellowship to EMB (F6E20324)

    A Seasonal Study of Dissolved Cobalt in the Ross Sea, Antarctica: Micronutrient Behavior, Absence of Scavenging, and Relationships with Zd, Cd, and P.

    Get PDF
    We report the distribution of cobalt (Co) in the Ross Sea polynya during austral summer 2005-2006 and the following austral spring 2006. The vertical distribution of total dissolved Co (dCo) was similar to soluble reactive phosphate (PO(4)(3-)), with dCo and PO(4)(3-) showing a significant correlation throughout the water column (r(2) = 0.87, 164 samples). A strong seasonal signal for dCo was observed, with most spring samples having concentrations ranging from similar to ~ 45-85 pM, whereas summer dCo values were depleted below these levels by biological activity. Surface transect data from the summer cruise revealed concentrations at the low range of this seasonal variability (similar to ~ 30pM dCo), with concentrations as low as 20pM observed in some regions where PO(4)(3-) was depleted to similar to 0.1 mu M. Both complexed Co, defined as the fraction of dCo bound by strong organic ligands, and labile Co, defined as the fraction of dCo not bound by these ligands, were typically observed in significant concentrations throughout the water column. This contrasts the depletion of labile Co observed in the euphotic zone of other ocean regions, suggesting a much higher bioavailability for Co in the Ross Sea. An ecological stoichiometry of 37.6 mu mol Co: mol(-1) PO(4)(3-) calculated from dissolved concentrations was similar to values observed in the subarctic Pacific, but approximately tenfold lower than values in the Eastern Tropical Pacific and Equatorial Atlantic. The ecological stoichiometries for dissolved Co and Zn suggest a greater overall use of Zn relative to Co in the shallow waters of the Ross Sea, with a Co: PO(4)(3-) / Zn: PO(4)(3-) ratio of 1:17. Comparison of these observed stoichiometries with values estimated in culture studies suggests that Zn is a key micronutrient that likely influences phytoplankton diversity in the Ross Sea. In contrast, the observed ecological stoichiometries for Co were below values necessary for the growth of eukaryotic phytoplankton in laboratory culture experiments conducted in the absence of added zinc, implying the need for significant Zn nutrition in the Zn-Co cambialistic enzymes. The lack of an obvious kink in the dissolved Co: PO(4)(3-) relationship was in contrast to Zn: PO(4)(3-) and Cd: wPO(4)(3-) kinks previously observed in the Ross Sea. An excess uptake mechanism for kink formation is proposed as a major driver of Cd: PO(4)(3-) kinks, where Zn and Cd uptake in excess of that needed for optimal growth occurs at the base of the euphotic zone, and no clear Co kink occurs because its abundances are too low for excess uptake. An unusual characteristic of Co geochemistry in the Ross Sea is an apparent lack of Co scavenging processes, as inferred from the absence of dCo removal below the euphotic zone. We hypothesize that this vertical distribution reflects a low rate of Co scavenging by Mn oxidizing bacteria, perhaps due to Mn scarcity, relative to the timescale of the annual deep winter mixing in the Ross Sea. Thus Co exhibits nutrient-like behavior in the Ross Sea, in contrast to its hybrid-type behavior in other ocean regions, with implications for the possibility of increased marine Co inventories and utility as a paleooceanographic proxy

    A seasonal study of dissolved cobalt in the Ross Sea, Antarctica : micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 4059-4082, doi:10.5194/bg-7-4059-2010.We report the distribution of cobalt (Co) in the Ross Sea polynya during austral summer 2005–2006 and the following austral spring 2006. The vertical distribution of total dissolved Co (dCo) was similar to soluble reactive phosphate (PO43−), with dCo and PO43− showing a significant correlation throughout the water column (r2 = 0.87, 164 samples). A strong seasonal signal for dCo was observed, with most spring samples having concentrations ranging from ~45–85 pM, whereas summer dCo values were depleted below these levels by biological activity. Surface transect data from the summer cruise revealed concentrations at the low range of this seasonal variability (~30 pM dCo), with concentrations as low as 20 pM observed in some regions where PO43− was depleted to ~0.1 μM. Both complexed Co, defined as the fraction of dCo bound by strong organic ligands, and labile Co, defined as the fraction of dCo not bound by these ligands, were typically observed in significant concentrations throughout the water column. This contrasts the depletion of labile Co observed in the euphotic zone of other ocean regions, suggesting a much higher bioavailability for Co in the Ross Sea. An ecological stoichiometry of 37.6 μmol Co:mol−1 PO43− calculated from dissolved concentrations was similar to values observed in the subarctic Pacific, but approximately tenfold lower than values in the Eastern Tropical Pacific and Equatorial Atlantic. The ecological stoichiometries for dissolved Co and Zn suggest a greater overall use of Zn relative to Co in the shallow waters of the Ross Sea, with a Co:PO43−/Zn:PO43− ratio of 1:17. Comparison of these observed stoichiometries with values estimated in culture studies suggests that Zn is a key micronutrient that likely influences phytoplankton diversity in the Ross Sea. In contrast, the observed ecological stoichiometries for Co were below values necessary for the growth of eukaryotic phytoplankton in laboratory culture experiments conducted in the absence of added zinc, implying the need for significant Zn nutrition in the Zn-Co cambialistic enzymes. The lack of an obvious kink in the dissolved Co:PO43− relationship was in contrast to Zn:PO43− and Cd:PO43− kinks previously observed in the Ross Sea. An excess uptake mechanism for kink formation is proposed as a major driver of Cd:PO43− kinks, where Zn and Cd uptake in excess of that needed for optimal growth occurs at the base of the euphotic zone, and no clear Co kink occurs because its abundances are too low for excess uptake. An unusual characteristic of Co geochemistry in the Ross Sea is an apparent lack of Co scavenging processes, as inferred from the absence of dCo removal below the euphotic zone. We hypothesize that this vertical distribution reflects a low rate of Co scavenging by Mn oxidizing bacteria, perhaps due to Mn scarcity, relative to the timescale of the annual deep winter mixing in the Ross Sea. Thus Co exhibits nutrient-like behavior in the Ross Sea, in contrast to its hybrid-type behavior in other ocean regions, with implications for the possibility of increased marine Co inventories and utility as a paleooceanographic proxy.This research was supported by the US National Science Foundation through research grants (OPP-0440840, OPP-0338097, OPP-0732665, OCE-0452883, OCE-0752991, OCE-0928414)

    Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae)

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e112134, doi:10.1371/journal.pone.0112134.Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.This study was supported by funding from the National Science Foundation (OCE-1061883 to KDB, BVM, and OCE-1061876 to GRD) and in part by grants from The Gordon and Betty Moore Foundation (to BVM and KDB)

    Targeted metaproteomics : detecting sub-species level protein biomarkers in the vast oceanic microbial metaproteome

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Proteomics 15 (2015): 3521-3531, doi:10.1002/pmic.201400630.Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial diversity in many locales presents us with unique challenges. We addressed this challenge with a targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared (redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8+1.9% of their tryptic peptides, while shared intraspecies peptides were higher, 13+15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ~4x107, 1000-fold larger than an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples.This research was funded by the Gordon and Betty Moore Foundation and the US National Science Foundation under grant numbers 3782, 3934, OCE-1260233, OCE-1233261, OCE-1220484, OCE-1333212 and OCE-1155566, and the Center for Microbial Oceanography Research and Education (C-MORE).2016-06-1

    Colony formation in Phaeocystis antarctica : connecting molecular mechanisms with iron biogeochemistry

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 4923-4942, doi:10.5194/bg-15-4923-2018.Phaeocystis antarctica is an important phytoplankter of the Ross Sea where it dominates the early season bloom after sea ice retreat and is a major contributor to carbon export. The factors that influence Phaeocystis colony formation and the resultant Ross Sea bloom initiation have been of great scientific interest, yet there is little known about the underlying mechanisms responsible for these phenomena. Here, we present laboratory and field studies on Phaeocystis antarctica grown under multiple iron conditions using a coupled proteomic and transcriptomic approach. P. antarctica had a lower iron limitation threshold than a Ross Sea diatom Chaetoceros sp., and at increased iron nutrition (>120pM Fe') a shift from flagellate cells to a majority of colonial cells in P. antarctica was observed, implying a role for iron as a trigger for colony formation. Proteome analysis revealed an extensive and coordinated shift in proteome structure linked to iron availability and life cycle transitions with 327 and 436 proteins measured as significantly different between low and high iron in strains 1871 and 1374, respectively. The enzymes flavodoxin and plastocyanin that can functionally replace iron metalloenzymes were observed at low iron treatments consistent with cellular iron-sparing strategies, with plastocyanin having a larger dynamic range. The numerous isoforms of the putative iron-starvation-induced protein (ISIP) group (ISIP2A and ISIP3) had abundance patterns coinciding with that of either low or high iron (and coincident flagellate or the colonial cell types in strain 1871), implying that there may be specific iron acquisition systems for each life cycle type. The proteome analysis also revealed numerous structural proteins associated with each cell type: within flagellate cells actin and tubulin from flagella and haptonema structures as well as a suite of calcium-binding proteins with EF domains were observed. In the colony-dominated samples a variety of structural proteins were observed that are also often found in multicellular organisms including spondins, lectins, fibrillins, and glycoproteins with von Willebrand domains. A large number of proteins of unknown function were identified that became abundant at either high or low iron availability. These results were compared to the first metaproteomic analysis of a Ross Sea Phaeocystis bloom to connect the mechanistic information to the in situ ecology and biogeochemistry. Proteins associated with both flagellate and colonial cells were observed in the bloom sample consistent with the need for both cell types within a growing bloom. Bacterial iron storage and B12 biosynthesis proteins were also observed consistent with chemical synergies within the colony microbiome to cope with the biogeochemical conditions. Together these responses reveal a complex, highly coordinated effort by P. antarctica to regulate its phenotype at the molecular level in response to iron and provide a window into the biology, ecology, and biogeochemistry of this group.Support for this study was provided by an Investigator grant to Mak A. Saito from the Gordon and Betty Moore Foundation (GBMF3782), National Science Foundation grants NSF-PLR 0732665, OCE-1435056, OCE-1220484, and ANT-1643684, the WHOI Coastal Ocean Institute, and a CINAR Postdoctoral Scholar Fellowship provided to Sara J. Bender through the Woods Hole Oceanographic Institution. Support was provided to Andrew E. Allen through NSF awards ANT-0732822, ANT-1043671, and OCE-1136477 and Gordon and Betty Moore Foundation grant GBMF3828. Additional support was provided to GRD through NSF award OPP-0338097

    Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate

    Get PDF
    The CLAW hypothesis argues that a negative feedback mechanism involving phytoplankton- derived dimethylsulfoniopropionate (DMSP) could mitigate increasing sea surface temperatures that result from global warming. DMSP is converted to the climatically active dimethylsulfide (DMS), which is transferred to the atmosphere and photochemically oxidized to sulfate aerosols, leading to increases in planetary albedo and cooling of the Earth’s atmosphere. A shipboard incubation experiment was conducted to investigate the effects of increased temperature and pCO2 on the algal community structure of the North Atlantic spring bloom and their subsequent impact on particulate and dissolved DMSP concentrations (DMSPp and DMSPd). Under ‘greenhouse’ conditions (elevated pCO2; 690 ppm) and elevated temperature (ambient + 4°C), coccolithophorid and pelagophyte abundances were significantly higher than under control conditions (390 ppm CO2 and ambient temperature). This shift in phytoplankton community structure also resulted in an increase in DMSPp concentrations and DMSPp:chl a ratios. There were also increases in DMSP-lyase activity and biomass-normalized DMSP-lyase activity under ‘greenhouse’ conditions. Concentrations of DMSPd decreased in the ‘greenhouse’ treatment relative to the control. This decline is thought to be partly due to changes in the microzooplankton community structure and decreased grazing pressure under ‘greenhouse’ conditions. The increases in DMSPp in the high temperature and greenhouse treatments support the CLAW hypothesis; the declines in DMSPd do not

    Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 3131-3147, doi: 10.5194/bg-6-3131-2009Iron availability and temperature are important limiting factors for the biota in many areas of the world ocean, and both have been predicted to change in future climate scenarios. However, the impacts of combined changes in these two key factors on microbial trophic dynamics and nutrient cycling are unknown. We examined the relative effects of iron addition (+1 nM) and increased temperature (+4°C) on plankton assemblages of the Ross Sea, Antarctica, a region characterized by annual algal blooms and an active microbial community. Increased iron and temperature individually had consistently significant but relatively minor positive effects on total phytoplankton abundance, phytoplankton and microzooplankton community composition, as well as photosynthetic parameters and nutrient drawdown. Unexpectedly, increased iron had a consistently negative impact on microzooplankton abundance, most likely a secondary response to changes in phytoplankton community composition. When iron and temperature were increased in concert, the resulting interactive effects were greatly magnified. This synergy between iron and temperature increases would not have been predictable by examining the effects of each variable individually. Our results suggest the possibility that if iron availability increases under future climate regimes, the impacts of predicted temperature increases on plankton assemblages in polar regions could be significantly enhanced. Such synergistic and antagonistic interactions between individual climate change variables highlight the importance of multivariate studies for marine global change experiments.This project was supported by US NSF grants ANT 0528715 to JMR, ANT 0741411, ANT 0741428 and OCE 0825319 to DAH, ANT 0338157 to WOS, ANT 0338097 to GRD, and ANT 0338350 to RBD
    corecore