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Abstract 
 
Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial 
diversity in many locales presents us with unique challenges. We addressed this challenge with a 
targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and 
demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific 
Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared 
(redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides 
shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus 
and Synechococcus shared an average of 4.8+1.9% of their tryptic peptides, while shared intraspecies 
peptides were higher, 13+15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide 
was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the 
high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were 
similar except at the Equator likely due to differential nitrogen stress responses between 
Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three 
combined oceanic microbial metagenomes was estimated to be ~4x107, 1000-fold larger than an 
individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of 
magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping 
algorithms should be able to withstand the added level of complexity in metaproteomic samples.  

1. Introduction 

 The ocean is an immense environment that creates and maintains habitable conditions on Earth, 
as well as being of vital economic importance to human society. There are numerous anthropogenic 
perturbations that impact ocean ecosystems [1], yet there remains considerable uncertainty regarding 
their long-term effects [2]. Due to the vastness of the oceans and the relatively small number of ocean 
scientists, it remains a major logistical challenge to characterize the oceans’ ecosystems 
representatively. Typical research efforts involve ship-based expeditions that focus on a particular 
geographic region for a short period of time (days to weeks). Alternatively coastal (various Long Term 
Ecological Research sites) and oceanic time-series sampling sites have been initiated to detect long-term 
changes with monthly resolution (e.g., Hawaii and Bermuda Atlantic time series stations). Finally, there 
are ocean basin “sections” that have surveyed the distribution of key chemical elements and 
compounds across ocean provinces (e.g., WOCE for nutrients, GEOTRACES for metals). The microbial 
community of the oceans has been biologically interrogated in various process studies, surface 
transects, and time-series analyses. These efforts have typically focused on aspects of the microbial 
productivity and/or diversity present, with characterization of the functional and biochemical 
capabilities being less common. Arguably, a comprehensive understanding of marine microbial 
biogeochemistry and its response to ocean change has been logistically and methodologically 
constrained.  

Recent advances in mass spectrometry-based proteomics methodologies offer powerful tools 
for the analysis of not only single organisms, but also for the study of more complex communities of 
organisms be they free-living in the natural environment or as microbiomes associated with larger 
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organisms [3, 4]. These communities harbor great biological diversity, containing an abundance of 
bacterial species as in the case of microbiomes, or very diverse assemblages from all three 
superkingdoms (Bacteria, Archaea, and Eukaryotes) as in the case of the ocean ecosystem 
environments. In recent years, several studies have demonstrated the potential to identify proteins and 
their relative abundances, and most recently, to quantify targeted protein biomarkers in complex 
natural environments to provide ecosystem and biogeochemical insights [4-6]. Yet, proteomic 
bioinformatic development has almost exclusively focused on single organisms rather than 
communities, despite the significant challenge of finding peptide mass “needles” in this ocean size 
haystack of protein diversity. Furthermore, the reliance of MS-proteomics for the identification of exact 
matches of tryptic peptides in predicted sequences from genomes can complicate matters. Only a ~10% 
divergence in the amino acid sequence (90% identity) of a protein can be tolerated before insufficient 
tryptic peptides remain for identification [7].  

 Metaproteomics, often defined as the analysis of a complex community of organisms [8], has 
unique challenges relative to “standard” proteomics of a single-organism. By considering these 
challenges we can evaluate the limitations of existing algorithms and pipelines, as well as provide 
motivation for future software development. Two primary objectives of metaproteomics at this early 
stage of study include: 1) the identification and 2) the quantitation of protein. Protein identification in 
metaproteomes currently relies on large sequence databases created from both concatenated genomes 
and metagenome libraries in order to cover as much of the natural diversity of proteins present as 
possible [3]. Progressing from global discovery proteomics, where maximizing identifications is the 
primary objective, to targeted (meta)proteomics, now allows identification and quantitation  of 
biomarkers that diagnose the environmental stresses experienced by individual members within the 
microbial community [5], as well as estimating biogeochemical functions through measurement of key 
enzymes, and making estimates of potential enzyme activity using specific activity and/or kinetic 
parameters. 

 In this manuscript we describe a workflow that combines discovery metaproteomic analyses, 
genomic in silico analyses of tryptic peptide diversity, and quantitative targeted proteomic 
measurements on the complex microbial community of the oligotrophic surface ocean. We focus on 
marine cyanobacteria due to their abundance and importance, in particular the species Prochlorococcus 
which was discovered in the late 1980s, by deploying flow cytometers at sea for the first time. 
Prochlorococcus is now known to be the single largest contributor to carbon fixation on Earth, 
contributing approximately 10% of photosynthetic activity globally [9, 10]. Prochlorococcus lives among 
other abundant marine microbes, such as the related cyanobacterium Synechococcus and highly 
abundant, as well as rarer, yet biogeochemically important nitrogen fixing cyanobacteria, such as 
Crocosphaera and Trichodesmium and the symbiotic cyanobacterium UCYN-A. Prochlorococcus and 
Synechococcus have numerous genomes available based on cultivated isolates from around the world 
[11, 12]. In addition, major alpha and gamma proteobacterial clades such as SAR11 and SAR86, and also 
recently recognized oceanic Archaea, such as the Thaumarchaeota, are abundant in the oceans. 
Together these major groups of microbes comprise a majority of free-living marine microbial 
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populations in the open ocean surface layers [13], although this excludes the extensive eukaryotic 
phytoplankton diversity found predominantly in larger size fractions. 

The resulting metaproteomic biomarkers are able to resolve microbial biodiversity to the level 
of individual marine cyanobacterial species, and in some cases beyond that to specific ecotypes within 
those species. This specific analysis of functional aspects of marine microbial populations over 
geographical scales of thousands of kilometers, has the potential to be deployed on future 
oceanographic surveys to detect large-scale changes in the oceans. With major changes known to be 
occurring throughout the oceanic and coastal ecosystems, this capability to detect ecosystem changes 
and the nutritional factors that control key biogeochemical processes could be built and deployed to 
diagnose known and as yet unknown alterations of the oceans. 

2. Materials and Methods 

Oceanic protein samples were collected by high-volume submersible McLane pumps (McLane 
Research, Falmouth MA) using custom Mini-Mulvfs filtration heads attached to a non-metallic line on 
the Research Vessel Kilo Moana in 2011. Each sample consisted of ~300 L of seawater filtered through 
0.2 Supor membrane filter, with pre-filtration through 3.0 and 51 micron filters, and preserved in 
RNAlater, which has been shown to effectively preserve cyanobacterial proteins [14], and frozen at -
80oC until extraction. One quarter of the 0.2 micron filters were extracted with an SDS-based protocol, 
embedded in a tube gel to purify away the detergent and salts [15], alkylated and reduced prior to 
trypsin digestion as previously described [5] (also see Supplemental materials).  

Biomarkers for two global nitrogen regulatory proteins were chosen from abundant proteins 
identified within a metaproteomic discovery dataset generated from samples from this research 
expedition and location, as previously described [5]. For the purposes of this environmental example, a 
tryptic peptide from each protein was targeted: the P-II protein (ID-34, VNSVIDAIAEAAK, MW 1299.70) 
and the NtcA protein (ID-35, LSHQAIAEAIGSTR, MW 1452.76). Comparison of three tryptic peptides from 
two proteins in this expedition was previously presented and showed good spatial coherence [5], 
although because of the natural population diversity this practice presents challenges unique to 
metaproteomics. Absolute quantitation of proteins was conducted by triple quadrupole mass 
spectrometry using a Thermo Vantage mass spectrometer and synthetic isotope labeled peptide 
standards as described previously [16]. Isotopically labeled standards were obtained from JPT Peptide 
Technologies, which contain a C-terminal peptide tag. The tag was released by tryptic digestion prior to 
analysis following the manufacturer’s protocol. Peptides were chosen with an effort to minimize the 
presence of methionine and cysteine residues, which can be oxidized and create variability in analyses 
[17, 18]. Mass spectrometry conditions were optimized for each peptide (collision energy and S-lens), 
and analyzed using chromatographic scheduling to increase the resolution for each peptide. For P-II, the 
precursor ion 650.859 (+2) was isolated and fragment ions 1087.5994, 901.4989, and 788.4149 were 
measured using collision energies of 21, 21, and 23, and S-Lens value of 148 for all. The heavy labeled 
version of this peptide had a precursor ion of 654.859, and fragment ions 1095.5994, 909.4989, and 
796.4149, with identical collision and S-Lens values as the light peptide. For the NtcA protein the 
precursor ions 485.2634 and 488.5968 for light and heavy peptides were isolated (+3), and fragment 



 

5 
 

ions 604.3414, 533.3042, 420.2201 for the unlabeled peptide and 614.3413, 543.3042, and 430.2201 for 
the heavy labeled peptide were quantified with an S-Lens value of 77 for all. Peptide abundances were 
calculated as a peak ratio of the corresponding isotopically labeled internal standard. Each internal 
standard was examined for its linear performance on the mass spectrometer using standard curves. 
Chromatographic separation and mass spectrometry were performed using a Paradigm MS4 HPLC 
(Michrom Bioresources) coupled to a Thermo Vantage TSQ mass spectrometer (Thermo Scientific) via an 
Advance capillary electrospray source (Michrom Bioresources). Samples were loaded on a peptide 
CapTrap prior to separation on a Magic C18AQ column (0.2 x 50 mm, 3 µm particle size, 200 Å pore size, 
Michrom Bioresources). Chromatographic separation was done with a 45 min gradient of 5% to 35% 
buffer B (where buffer A was 0.1% formic acid in water, Fisher Optima and buffer B was 0.1% formic acid 
in acetonitrile, Fisher Optima) at 4 µL/min. LOD and LOQ were 0.009 fmol and 0.025 fmol for peptide ID-
34 and 0.013 fmol and 0.035 fmol for peptide ID-35, respectively.  

A Python software toolkit (METATRYP) was written that ingests microbial genomes and digests 
them according to proteolytic enzyme rules. The toolkit source code and documentation are available 
on Github: www.github.com/saitomics/metatryp. The toolkit uses trypsin as the default digestion 
enzyme but other enzymes can be programmed as regular expressions. The resulting peptides and 
metadata are stored in a stand-alone SQLite database, which can then be queried by command-line 
scripts. Custom user command line SQLite queries are also possible, and examples are provided in 
toolkit documentation. Ingest and digest parameters can be set to change the digestion enzyme, 
number of missed cleavages allowed, and minimum and maximum number of amino acids per peptide. 
The METATRYP toolkit was developed in parallel with the web-server based UNIPEP [19], but has 
advantages in its use of an offline, portable SQLite database accessible through command-line querying, 
and in allowing the use of novel microbial genomes and custom sequence files prior to public release 
that are now common in environmental microbiology fields due to the widespread use of inexpensive 
high-throughput DNA sequencing capabilities. METATRYP installation and use is straightforward with 
several Bash scripts for data ingestion (digest_and_ingest.sh), SQLite database confirmation 
(list_taxon_ids.sh), analysis of shared tryptic peptides between genomes 
(generate_redundancy_tables.sh), and querying of the SQLite database for specific peptide sequences 
shared between genomes (query_by_sequence.sh). A useful feature of METATRYP is that it allows for 
sequence variability in sequence queries to identify of homologous sequences that could be targeted 
(query_by_sequence --max-distance [value]). Redundancy peptide tables can also be easily generated 
for a subset of genomes within the SQLite database by use of a taxon input file and script parameter 
(generate_redundancy_tables.sh  --taxon-id-file [filename]).  

Metaproteome size estimates, as the number of unique tryptic peptides, were made using 
metagenomic resources, the Chainsaw trypsin digestion program from Proteowizard [20], and custom 
Bash Shell scripts to count number of peptides of each peptide length (Figure 4) and the total number of 
peptides between 6-22 amino acid length (Figure 4 inset). Genomes and metagenomes were 
downloaded from NCBI (http://www.ncbi.nlm.nih.gov/), the Joint Genome Institute Integrated Microbial 
Genome Portal (http://img.jgi.doe.gov/) and CAMERA (http://camera.crbs.ucsd.edu/projects/; archived 
at http://data.imicrobe.us/). The combined Pacific metaproteome was created using metagenomic 

http://www.github.com/saitomics/metatryp


 

6 
 

datasets from Station Aloha, Line P, and Saanitch Inlet. Metagenomic samples were typically filtered 
onto 0.2 micron filters to concentrate prokaryotic cells and prefiltered with glass fiber filters to remove 
larger eukaryotic cells [21]. Metaproteome sequences were translated from raw sequence or partial 
genomic reads, and hence represent tryptic, semi-tryptic, or truncated sequences (for sequences at the 
ends of DNA reads). 

3. Results  

We conducted targeted metaproteomic analyses of a Pacific Ocean microbial community using 
the workflow shown in Figure 1. Specifically, abundant peptides associated with proteins of interest 
from field metaproteomes were selected and subjected to in silico analysis of the occurrence of those 
peptides within representative microbial isolate genomes (Figure 2). Next targeted metaproteomic 
assays were designed, optimized and applied to the original samples (Figure 3). The discovery and 
targeted mass spectrometry-based proteomics methodologies and their environmental implications for 
nutrient stress in Central Pacific Prochlorococcus were previously described [5], and here we specifically 
elaborate on the challenges associated with targeting individual species in complex communities using 
in silico analysis and its technical implications. Specific examples of inter- and intra-species level 
specificity are described along with their implications for targeted analyses in the marine environment. 

Key to the practical implementation of targeted proteomics in natural communities with 
complex assemblages of microbes is an ability to assess the taxa associated with each targeted peptide. 
In essence, if one is designing a targeted protein assay for a protein it is important to know how many 
species may contain the peptide of choice in order to correctly assign its microbial taxonomic origin. The 
Python METATRYP library we developed creates a SQL database compatible output that can be easily 
searched to identify occurrences of peptides in representative microbial proteomes, translated in silico 
from genomes. The number and percentage of tryptic peptides shared in common between pairs of ~50 
selected marine microbial genomes representative of the pelagic oligotrophic (“blue water”) ocean were 
calculated to assess a broad sense of the specific metaproteomic capabilities (Table 1 and Figure 2). 
Because some genomes are larger than others (as shown in the varying total number of tryptic peptides 
per genome in Table 1), the direction of the pairwise comparison influences the calculated percentage of 
shared peptides. The heatmap and associated values in Figure 2 allow this bidirectional pairwise 
comparison where genomes on the X-axis refer to the genome (and the total number of tryptic peptides 
coded within) being compared to (e.g., the denominator genome). The number of peptides shared 
within a species can range from ~5% to as high as ~50-55% for closely-related strains (e.g., 
Synechococcus BL107 and Synechococcus PCC9902; Prochlorococcus MIT9601 and Prochlorococcus 
MIT9301). Analysis of 12 Prochlorococcus genomes in this manner identified 13+15% shared peptides 
between them, reflective of the broad range within the Prochlorococcus species. Comparisons between 
closely related species, such as the marine cyanobacteria Prochlorococcus and Synechococcus tend to 
range between 1 and 10%, with an average of 4.8+1.9 for Prochlorococcus peptides within 
Synechococcus genomes (n=10; marine strains only). More distantly related nitrogen fixing 
cyanobacteria species such as Trichodesmium and UCYN-A have 2% or lower shared tryptic peptides 
within Prochlorococcus and marine Synechococcus, as well as being likely to be physically separated by 
being in a larger filtration size fraction. Similarly, other bacterial species such as the highly abundant 
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Pelagibacter SAR11 group have 0.3% or fewer shared peptides in common with the marine 
cyanobacteria. Two non-marine microbes (E.coli GCA and Pseudomonas aeruginosa PA7) were also 
included as controls and had ~0.5% tryptic peptides shared in common with marine cyanobacteria 
Prochlorococcus and Synechococcus. Together these analyses demonstrate that most tryptic peptides 
within the microbial species examined here are available for species-level targeting. Given that 
Prochlorococcus, Synechococcus and the SAR11 clade are considered to be three of the most abundant 
free-living microbes in the subtropical and tropical open ocean environments, this low level of shared 
tryptic peptides is particularly encouraging for deployment of targeted metaproteomic methods. 

To demonstrate the issues involved with unique and shared peptides in marine microbes when 
deploying targeted metaproteomic assays, we selected two example tryptic peptides from two global 
nitrogen regulatory proteins, P-II and NtcA. Specific peptides corresponding to each protein that were 
abundant in the global discovery dataset were selected and examined using METATRYP queries, where 
their presence within 51 microbial genomes was characterized (Table 1). These two nitrogen stress 
proteins provide an interesting example case, where their vertical distributions are generally similar 
across the Central Pacific Ocean, increasing in abundance towards the surface and consistent with 
nitrogen stress in the North Pacific Subtropical Gyre (Figure 3), prior to onset of iron limitation at the 
Equator [5]. Yet these two peptides showed differences in species specificity by METATRYP analysis: the 
NtcA tryptic peptide sequence was found in high and low light ecotypes of the Prochlorococcus species, 
in all of the marine Synechococcus, and the three nitrogen fixing cyanobacteria representatives 
(Crocosphaera, Trichodesmium, and UCYN-A). In contrast, the P-II targeted peptide was exclusively 
found in the high-light ecotype of Prochlorococcus (Table 1). While both of these nitrogen regulatory 
proteins, as represented by their targeted peptides, clearly showed nitrogen stress when nitrate is 
scarcer in the North Pacific Subtropical Gyre (NPSG; Figure 3A-E), they also showed two subtle 
differences: first, the NtcA protein persisted in the transition waters between NPSG and the equatorial 
Pacific at stations 3 and 5 (Figure 3), but P-II had declined significantly or disappeared by those stations, 
respectively. Second, NtcA showed higher abundances at the shallowest depth compared to P-II at 
stations 1 and 3. Comparison of biomarker:biomarker distributions (Figure 3F) illustrates both of these 
trends, where station 5 has a steep slope indicating low abundances of P-II relative to NtcA there, and 
the shallowest depth at station 5 (the last point on the line) jogs back towards the left, consistent with a 
decrease in P-II relative to NtcA. 

4. Discussion 

While both P-II and NtcA biomarkers showed nitrogen stress in the photic zone of the North 
Pacific Subtropical Gyre and were consistent with similar distributions of a urea transporter, there were 
subtle differences in their distributions, particularly at the Equatorial Station 5 (Figure 3).  These results 
illustrate the value of the METATRYP analysis, allowing a teasing apart of potential taxonomic 
interferences. Based on the analysis shown in Table 1, we can conclude P-II peptide was specific to 
Prochlorococcus, with the caveat that this interpretation is based on the genomes utilized in the 
analysis. Yet by the same analysis the NtcA peptide sequence was also found in other cyanobacteria, in 
particular the abundant Synechococcus which often co-occurs with Prochlorococcus. Other 
cyanobacterial populations also contained the targeted NtcA peptide such as Trichodesmium and 
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Crocosphaera, yet both species are less abundant and would likely have been removed by size 
fractionation (0.2-3 micron). As a result, a plausible explanation for the persistence of NtcA at the 
Equatorial region is that Synechococcus continued to experience nitrogen stress at the elevated nitrogen 
abundances found with Equatorial Upwelling while Prochlorococcus ceased to, and that both microbial 
species could have contributed to this biomarker’s distribution across this section. This interpretation is 
consistent with the larger cell size of Synechococus relative to Prochlorococcus and the associated 
advantages for nutrient acquisition that come with the smaller surface-area to volume ratio [22]. As a 
result, the P-II protein may be a more specific diagnostic of nitrogen stress for Prochlorococcus, in 
addition to the Prochlorococcus urea transporter described previously [5], given their species and 
ecotype-level resolving power (Table 1), while maintaining the diagnostic principle as both P-II and UrtA 
expression is controlled by NtcA. Although further studies confirming this hypothesized phenomenon 
would be useful, this example demonstrates how the METATRYP analysis allows specific interpretations 
of the taxa potentially being measured by each biomarker.  

These observations also demonstrate the added value of global discovery-driven metaproteomic 
data in discovering novel biomarkers for use in ecosystem diagnosis. While NtcA had been previously 
characterized as a potential nitrogen stress biomarker in the marine cyanobacterium Synechococcus [23, 
24], less is known about the response of the P-II protein, particularly in the marine cyanobacteria [25-
27]. This field examination along a natural gradient showed P-II to be a strong candidate for a biomarker 
of nitrogen stress. Laboratory studies on non-marine cyanobacteria (Synechococcus PCC6803) have 
found P-II to have distinct nitrogen regulatory functions, and it plays an important role at the 
intersection of carbon and nitrogen metabolism [26, 28]. In a transcriptome study of two 
Prochlorococcus strains, mixed responses of P-II protein were observed during short-term nitrogen 
deprivation [25].  These differences may be strain specific, where the MIT9313 strain that lacked a P-II 
response is a low-light ecotype (Table 1) found near the bottom of the photic zone where dissolved 
inorganic nitrogen is more abundant, whereas the MED4 strain (also known as CCMP1986) studied is a 
high-light ecotype strain that lives in nitrogen depleted waters [12]. Similarly, no obvious response by 
antibody-western blotting method was observed in a 24 h nitrogen deprivation experiment in 
Prochlorococcus strain PCC9511 [27]. In contrast to these laboratory studies, this Central Pacific dataset 
showed a coherence between P-II and NtcA responses. Interestingly, the specific nitrogen regulatory P-II 
peptide discovered and targeted in our study was not present as an exact match in either genome of the 
strains studied in the Tolonen study (MED4 and MIT9313; Table 1, present with 1 and 4 amino acid 
variants from the targeted sequence), likely due to the biogeographical differences as we expect the 
high-light II ecotype (HL II) of Prochlorococcus to be abundant in the Central Pacific Ocean. In more 
temperate climate zones where the high-light I ecotype (HL I; including MED4) of Prochlorococcus [9, 
29], alternate peptide biomarkers could be employed to detect P-II. In the case of these biomarkers we 
are fortunate to have multiple signals indicating and confirming the diagnosis of ecosystem level 
nitrogen scarcity (P-II, NtcA, and urea transporters) for the Central Pacific Ocean ecosystem [5].  

For the abundant marine cyanobacteria Prochlorococcus, we have demonstrated the capability 
of the development and deployment of species and ecotype level specific biomarkers for nitrogen and 
other nutrient stresses within natural ecosystems. Numerous genomes are available for the major 
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marine cyanobacteria Prochlorococcus and Synechococcus, with most of them as closed (complete) 
genomes, thus offering the level of resolution as depicted here. Yet other marine microbial taxa that are 
extremely abundant in the oceans but even more difficult to cultivate such as SAR11, SAR86, and the 
Thaumarcheota, have fewer genomes from cultivated isolates available. For example, there are only 
three closed genomes (a requirement for accurate tryptic digest prediction) available for the marine 
pelagic Thaumarcheota and SAR86 at present [30, 31], and hence identifying tryptic peptide biomarkers 
will be more challenging relative to the cyanobacteria until more sequence information becomes 
available. Similarly, distant members of the Peligibacter SAR11 clade such as tropical coastal HIMB59 
and HIMB114 [32] have only ~3% shared tryptic peptides with temperate coastal ocean strains 
Peligibacter 1002 and 1062 and the subtropical Atlantic Ocean strain 7211 (Figure 2), implying there is 
considerable heterotrophic bacterial diversity that remains to be identified and incorporated into 
metaproteomic interpretations. Careful cultivation efforts and single cell genome sequencing will 
provide assistance in targeting these underrepresented taxa, although the latter method does not 
currently produce closed genomes, thus hindering the ability to fully document a peptide’s shared use. 
Future applications could use curated metagenome assemblies to further infer taxon associations of 
tryptic peptides.  

In addition, because this targeted metaproteomic workflow (Figure 1) relies on bottom-up 
(shotgun) datasets for peptide targets, there are parallel issues associated with the “assembly” of 
identified peptides to corresponding proteins in the natural environment. Because sequence diversity 
exists within strains and species of metaproteomic datasets, as described above, it can be difficult to be 
entirely confident of the assignment of tryptic peptides to protein sequences since there is the 
possibility that there are multiple related proteins present within a sample that share tryptic peptide 
sequences. Utilizing metagenome assemblies, ideally from  similar geographical and temporal 
environmental space, could enhance our protein sequence assembly capability. One implication of this is 
that the popular proteomics practice of mapping multiple unique tryptic peptides to a single protein in 
model organisms may be difficult to adhere to in targeted metaproteomics studies, at least in the short-
term, since the sequence diversity and resultant tryptic peptides shift subtly across ecotypes/strains and 
thus potentially  across geographic regions. Consequently, a useful first approach to quantitating 
proteins within complex environmental communities is to focus on each tryptic peptide (and multiple 
tryptic peptides as in this study) as the fundamental unit of analysis and quantitation, and as a 
representation of the targeted protein. Future studies could aim to quantitatively measure the 
abundance of a protein “population” by measuring multiple closely related peptides to capture the 
diversity associated within specific proteins of a species or at the sub-species level within a population 
(e.g., ecotypes). Similar peptides for those targeted here are present within other cyanobacterial 
genomes, as shown in Table 1 (listed as -1 - -4). A capability for analysis of the protein population would 
require a comprehensive assessment of the microbial diversity present, fortunately a considerable 
capability for this has been already being established in the open ocean surface environment using 
metagenomic sequencing [33].  

Another challenge associated with the discovery of biomarkers for ecosystem diagnosis 
concerns the ability to conduct discovery-level proteomics of complex mixed community assemblages. 
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In short, if biomarker peptides cannot be discovered from the complex metaproteome spectral dataset, 
then the development of targeted assays is also hindered. The present approach for discovery 
metaproteomics has utilized peptide mapping algorithms designed for single organism analysis (e.g., 
SEQUEST, X!Tandem; [34, 35]), rather than for the large amounts of translated DNA and the numerous 
redundant protein sequences that result from utilizing a compilation of many genomes and 
metagenomic datasets. This approach of using large and continually growing genome sequence libraries 
remains somewhat unsatisfying as a long-term approach to metaproteomic research. Natural 
environments are subject to evolutionary modifications of amino acid sequences, as well as shifts in 
abundances of co-occurring species that could increase the prevalence of rare microbes to dominating 
ones. Being continually tied to reanalysis of genome and metagenome samples seems an inefficient 
means to capture small variations in amino acid sequences, particularly if large geographic regions such 
as the oceans are intended to be studied. In short, do we need to continually resequence the DNA of the 
oceans’ microbial diversity in order to maintain a metaproteomic diagnostic capability? Alternatives to 
this approach could include de novo proteomic sequencing algorithms (algorithms that do not require 
genomic databases for the identification of proteins within mass spectra) or the incorporation of point 
mutations into peptide mapping algorithms.  

Given that environmental protein identification has essentially relied on a repurposing of 
peptide mapping algorithms designed for simpler single organism proteomics, it is useful to 
quantitatively estimate how much more difficult the task of protein identification is for metaproteomics 
of complex microbial ecosystems. A simple way to approach this is to estimate the number of tryptic 
peptides that are theoretically possible for mass spectrometry amenable amino acid space (e.g., ~6-22 
length peptides; excluding post-translational modifications) and compare this to the sum of unique 
tryptic peptides coded in microbial proteomes and metaproteomes using translated DNA sequences. 
While this is not realistic relative to estimates that a limited number of protein folds are likely utilized by 
life (<10,000) [36], this potential diversity is very much reflective of the current worst-case 
computational problem of identifying all protein sequences within environmental samples. In this 
manner, we can estimate the extent of amino acid space that is being utilized by microbial genomes and 
metaproteomes in microbial populations of the oceans, compared to what is theoretically possible. To 
estimate all possible amino acid space for peptides, we focused on bottom-up amenable tryptic 
peptides of length 6-22 amino acids, where the abundance of all possible amino acid combinations is 
equal to:  

(1)     ∑ (21𝑆−1 + 2)22
𝑆=6  

where S is the sequence length, and the carboxy terminus is required to be one of the two tryptic 
compatible residues (lysine or arginine). We are including selenocysteine as an alternative amino acid 
(as a 21st possible amino acid) based on its use in certain marine algae. We ignored the interference of 
proline when adjacent to the tryptic cleavage site, and missed tryptic cleavage sites, for simplicity here, 
which would have minor opposing influences on the total amount of peptide diversity.  For comparison, 
the corresponding DNA-based information space for peptides was simply calculated as: 

(2)                   ∑ 4(𝑆×3)22
𝑆=6  
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where the peptide length (S) is tripled to convert to DNA sequence and the potential nucleotide 
combinations. Alternatively, this could also be calculated for codon usage and other restrictions to yield 
significantly lower numbers of potential sequences.  

The sum of all possible sequence variants on the DNA and amino acid level for peptides of 
length 6 to 22 was calculated to be 6.1e27 and 5.5e39 for amino acid and DNA space, respectively. For 
comparison, the total number of unique tryptic peptides of the same length range coded for within the 
genome of the cyanobacterium Prochlorococcus was 47,197 (strain MED4/CCMP1986), compared to 
1,646,039 within the human proteome, as coded for in the genome (Figure 4 inset). The estimated 
utilized metaproteome space at Station ALOHA metagenome dataset near the Hawaiian Islands had 
2.2e7 unique tryptic peptides, and a combined Pacific Ocean microbial metaproteome made of three 
metagenomic projects (see Methods) had 4.2e7 unique tryptic peptides. Note that this is restricted to 
the microbial size fraction, using 0.2 micron filters and prefilters to remove most eukaryotic cells, as well 
as being limited to the sequencing depth of those datasets. Increased sequencing depth would add rarer 
microbial sequences. This current oceanic metaproteome estimate is ~20 orders of magnitude smaller 
than the theoretical maximal possible number of tryptic peptides for the size range of peptide sequence 
length. An important characteristic of the real peptide diversity is that the number of tryptic peptides 
per amino acid length decreases as the sequence length becomes longer even in the complex 
metaproteome samples (at >8 amino acid peptide length), in contrast to the theoretical peptide 
diversity that increases exponentially with each added amino acid (Figure 4). This difference is perhaps 
due to both structural limitations as well as the occurrence for tryptic cleavage sites that prevent the 
accumulation of longer peptide diversity. The fact that 20-fold less amino acid space is utilized, 
compared to what is theoretically possible, implies that there are significant design constraints placed 
on the protein sequence, including from specific protein folds and their secondary and tertiary structural 
requirements, as well as to the coordination environments for metal ions that can arise from unique 
positional dependencies (e.g., zinc finger motifs). As a result, much of amino acid space may either not 
be useable and/or has not been explored by life as of yet [33, 36]. The implication of this calculation is 
that the large expanse of potential amino acid space does not necessarily need to be searched de novo 
to capture the existing metaproteome diversity in nature, but rather algorithms that can increase the 
diversity search space by only several orders more than available metagenomic resources could capture 
much of the microbial diversity. Moreover, because this estimate of metaproteome extent is estimated 
by use of translated DNA sequences, it implies that the workflow utilized here (Figure 1) coupled to 
high-quality metagenomic resources is a good first approach for environmental metaproteomic analysis 
and ecosystem diagnosis, and that incremental improvements in algorithm and sequence database use 
could improve these efforts as opposed to the development of new de novo sequencing approaches.  

It is interesting to contrast the limited extent of proteome space with that of chemical molecule 
space as well, which is estimated to be on the order of 1060 [37], and is roughly 38 orders of magnitude 
greater than the calculated peptide space described above and ~53 orders of magnitude greater than 
our observed utilized metaproteome space. While the extent of chemical diversity space used in the 
natural environment is difficult to know, it is thought that much of this space may be populated in such 
low quantities as to prevent active utilization or destruction of those molecules. In contrast, the 
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polymeric nature of proteins and peptides and their biological production by processes constrained by 
natural selection and functional requirements appears to limit the use of possible peptide space 
considerably relative to all possible amino acid space.  

Together, the successful demonstration of targeted analyses within the highly complex 
metaproteome environment of the oceans [5], as well as in silico analyses of redundant peptides and 
limited use of potential peptide sequence space, imply that the deployment of targeted metaproteomic 
analyses into the vast oceans for ecosystem and biogeochemical diagnosis is a feasible enterprise. While 
the development of mass spectrometry proteomic technology has been motivated by biomedical needs, 
the impressive emerging capabilities appear to be of potentially great use to the smaller community of 
scientists involved in studying and diagnosing the largest ecosystem on Earth. Given the unprecedented 
rapid and global scale of changes in this ecosystem [1], a proteomic-based diagnostic system could be a 
valuable tool towards developing sustainable human economies. 
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Table 1. Marine microbial genomes used for redundant (shared) tryptic peptide analyses and the total 
number of tryptic peptides within each. Genome numbers listed correspond to the pairwise analyses in 
Figure 2. Tryptic peptides representing the global nitrogen regulatory proteins P-II and NtcA, with exact 
matches or 1-4 amino acid variants shown (as negative numbers), and dashes for not present. Amino 
acid variants were not detected by this targeted method, but could be added in future analyses. ID-34 
and ID-35 refers to the unique peptide identification number used in Saito et al., 2014.     

Genome 
number Taxon Phylum/Class/Ecotype 

Tryptic 
Peptides 

P-II    
(ID-34) 

NtcA    
(ID-35) 

1 E. coli GCA Gammaproteobacteria; non-marine 71413 - - 
2 HIMB114 Alphaproteobacteria 23891 - - 
3 HIMB59 Alphaproteobacteria 26119 - - 
4 Nitrobacter 311 Alphaproteobacteria 63263 - - 
5 Nitrobacter defluvii Alphaproteobacteria 74503 - - 
6 Nitrobacter winogradski Alphaproteobacteria 53999 - - 
7 Nitrobacter Nb-211 Alphaproteobacteria 57933 - - 
8 Atelocyanobacterium thalassa (UCYN-A) Cyanobacteria 22612 - Exact 
9 Cenarchaeum symbiosumA Thaumarchaeota 33399 - - 

10 Crocosphaera 8501 Cyanobacteria 72663 - Exact 
11 Kuenenia stuttgartiensis Planctomycetes 67145 - - 
12 Peligibacter 1002 Alphaproteobacteria 25009 - - 
13 Peligibacter 1062 Alphaproteobacteria 24647 - - 
14 Pelagibacter 7211 Alphaproteobacteria 26596 - - 
15 Prochlorococcus CCMP1986 (MED4) Cyanobacteria; High-light Ecotype 29305 -1 Exact 
16 Prochlorococcus MIT9211 Cyanobacteria; Low-light Ecotype 29584 - Exact 
17 Prochlorococcus MIT9215 Cyanobacteria; High-light Ecotype 31352 Exact Exact 
18 Prochlorococcus  MIT9301 Cyanobacteria; High-light Ecotype 29937 Exact Exact 
19 Prochlorococcus  MIT9303 Cyanobacteria; Low-light Ecotype 41781 -4 -1 
20 Prochlorococcus  MIT9312 Cyanobacteria; High-light Ecotype 30535 Exact Exact 
21 Prochlorococcus  MIT9313 Cyanobacteria; Low-light Ecotype 36064 -4 -1 
22 Prochlorococcus  MIT9515 Cyanobacteria; High-light Ecotype 30234 -1 Exact 
23 Prochlorococcus  AS9601 Cyanobacteria; High-light Ecotype 30324 Exact Exact 
24 Prochlorococcus  1375 (SS120) Cyanobacteria; Low-light Ecotype 30441 - -1 
25 Prochlorococcus  NATL1A Cyanobacteria; Low-light Ecotype 31679 - Exact 
26 Prochlorococcus NATL2a Cyanobacteria; Low-light Ecotype 30457 - Exact 
27 Pseudomonas PA7 Gammaproteobacteria; non-marine 111368 - - 
28 Pseudomonas putida Gammaproteobacteria; non-marine 100112 - - 
29 Roseobacter sp. MED193 Alphaproteobacteria 74759 - - 
30 Roseobacter denitrificans OCh 114 Alphaproteobacteria 69803 - - 
31 Roseobacter litoralis Och 149 Alphaproteobacteria 74525 - - 
32 Sulfitobacter sp. EE-36 Alphaproteobacteria 58154 - - 
33 Sulfitobacter sp. GAI-101 Alphaproteobacteria 70434 - - 
34 Sulfitobacter sp. NAS-14 Alphaproteobacteria 64122 - - 
35 Synechococcus  WH5701 Cyanobacteria 48405 - Exact 
36 Synechococcus  WH7803 Cyanobacteria 39836 -4 Exact 
37 Synechococcus WH7805 Cyanobacteria 42586 -4 Exact 
38 Synechoccocus  WH8102 Cyanobacteria 39990 - Exact 
39 Synechococcus  RS9916 Cyanobacteria 42530 - Exact 
40 Synechococcus  RS9917 Cyanobacteria 42160 -4 -1 
41 Synechococcus  BL107 Cyanobacteria 37482 - Exact 
42 Synechococcus  CC9311 Cyanobacteria 41294 -3 Exact 
43 Synechococcus  CC9605 Cyanobacteria 40526 - Exact 
44 Synechococcus  CC9902 Cyanobacteria 36932 - Exact 
45 Synechocystis  PCC6803 Cyanobacteria; non-marine  42272 - Exact 
46 Synechcooccus  JA-2-3Ba Cyanobacteria; non-marine (Yellowstone) 46875 - Exact 
47 Synechococcus JA-3-3Ab Cyanobacteria; non-marine (Yellowstone) 45297 - Exact 
48 Synechococcus  PCC7942 Cyanobacteria 43521 - Exact 
49 Synechococcus  RCC307 Cyanobacteria 37847 - Exact 
50 Thiomicrospira crunogena Gammaproteobacteria; hydrothermal vent 40564 - - 
51 Trichodesmium sp. IMS101 Cyanobacteria; diazotroph 88483 - Exact 
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Figure 1. A) Sampling region for the METZYME expedition on the R/V Kilo Moana in 2011. B) Targeted 
metaproteomic workflow for quantitation of species-specific oceanic biomarkers. 
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Figure 2. Heatmap of the percent tryptic peptides shared between 51 microbial genomes (see Table 1 
for genome number key). Each pairwise comparison is represented by a square with the value of the 
percent shared tryptics embedded. Each genome’s comparison with itself is represented by the white 
diagonal line. Prochlorococcus are found between genomes 15 and 26, and Synechococcus between 35 
and 49. Interspecies comparisons of Prochlorococcus to Synechococcus genomes are found off the 
diagonal between genomes 26 on the vertical axis and 35 and 49 on the horizontal axis, or vice versa for 
Synechococcus to Prochlorococcus comparisons. A black and white version of this heatmap is available in 
the supplemental materials. 
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Figure 3. Comparison of the oceanic water column distributions of cyanobacterial nitrogen regulatory 
proteins P-II (A, E) and NtcA (B, E) in the Central Pacific Ocean in vertical profiles and as an ocean 
section. C) Integrated photic zone nitrate concentrations (20-100m). Zero values measured below the 
sunlit photic zone, consistent with the measured distribution of these photosynthetic microbes as 
measured by the unique Prochlorococcus pigment divinyl chlorophyll a distributions in panel D. F) 
Comparison of NtcA versus P-II showed cohesive responses within each station, but varied across 
stations, likely indicative of different nitrogen stress levels in Prochlorococcus and Synechococcus. For 
example, at Station 1 in the Gyre both microbes were likely nitrogen stressed where nitrogen is scarcest, 
compared to Station 5 on the equator where nitrogen availability was higher and high-light ecotype 
Prochlorococcus is no longer N stressed but displayed iron stress as described in Saito et al. 2014 [5]. 
Lines in panel F follow trends of decreasing depth, with the deepest samples at the origin where 
cyanobacterial biomass was least abundant.  
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Figure 4. Estimates of the number of unique tryptic peptides found in samples relevant to ocean studies. 
The number of unique tryptic peptides within 1) the Prochlorococcus MED4 (CCMP1986), 2) the human 
proteome (for comparison), 3) the Station ALOHA (near Hawaii) metaproteome using translated 
genomic sequences [21], 4) a combined Pacific metaproteome database, 5) all possible protein space 
(using 21 possible amino acids and no post-translational modifications), and 6) all possible DNA space - 
untranslated, unique DNA sequences for 18-66 base pairs in length. Observed metaproteomes and 
proteome peptide diversity decreases with increasing tryptic peptide length, likely due to the 
occurrence of tryptic cleavage sites, in contrast to the much greater number of possible peptide 
sequences in protein space. Inset: cumulative number of unique tryptic peptides 6-22 amino acids in 
length for Prochlorococcus (Pro), human, the Pacific ALOHA station metaproteome, and the combined 
Pacific microbial metaproteome. These estimates for metaproteome space are based on the extent of 
genome sequencing depth, where deeper sequencing could include rarer microbes. 
  

 

 


