613 research outputs found

    I think I might be gay

    Get PDF
    For young people struggling with issues around their sexuality, 'coming out' to their families, schools and communities can be traumatic. The alarming statistics for youth suicide, risk-taking behaviours and mental health concerns reflect the alienation and harassment felt by gay, lesbian, bisexual and transgendered young people as they wrestle in isolation with the difficulties of 'being different'. They need families, schools and communities to provide support, understanding and affirmation; and to be their allies against homophobia. Maria Pallotta-Chiarolli has compiled a valuable guide for all those whose lives are affected by a young person coming out. In this work she includes first-hand accounts from families, schools and communities across different socioeconomic levels, diverse regions and many cultural backgrounds. She also provides vital suggestions and advice for those at the coalface of this issue - parents of young people who need to come out, high-school teachers and community leaders - as well as effective responses and strategies for dealing with homophobia in any environment

    Pressure-induced phase transition in the electronic structure of palladium nitride

    Full text link
    We present a combined theoretical and experimental study of the electronic structure and equation of state (EOS) of crystalline PdN2. The compound forms above 58 GPa in the pyrite structure and is metastable down to 11 GPa. We show that the EOS cannot be accurately described within either the local density or generalized gradient approximations. The Heyd-Scuseria-Ernzerhof exchange-correlation functional (HSE06), however, provides very good agreement with experimental data. We explain the strong pressure dependence of the Raman intensities in terms of a similar dependence of the calculated band gap, which closes just below 11 GPa. At this pressure, the HSE06 functional predicts a first-order isostructural transition accompanied by a pronounced elastic instability of the longitudinal-acoustic branches that provides the mechanism for the experimentally observed decomposition. Using an extensive Wannier function analysis, we show that the structural transformation is driven by a phase transition of the electronic structure, which is manifested by a discontinuous change in the hybridization between Pd-d and N-p electrons as well as a conversion from single to triple bonded nitrogen dimers. We argue for the possible existence of a critical point for the isostructural transition, at which massive fluctuations in both the electronic as well as the structural degrees of freedom are expected.Comment: 9 pages, 12 figures. Revised version corrects minor typographical error

    High-Pressure Synthesis of a Pentazolate Salt

    Full text link
    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N5-, which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides a critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species

    Eccentricity signal in the nannofossil time-series across the Mid-Pleistocene Transition in the northwestern Pacific Ocean (ODP Site 1209)

    Get PDF
    The Mid-Pleistocene Transition (MPT; 1.25–0.6 million years ago, Ma) is one of the most important and still debated climate reorganizations during which the glacial/interglacial cycles switched from a 41-thousand years (kyr) cycle (i.e. obliquity) to a quasi-periodic 100-kyr cycle (associated with orbital eccentricity). Variations in the orbital geometry can affect the abundance and distribution of certain marine biota such as the coccolithophores, a group of unicellular calcifying phytoplankton, whose skeletal remains – called nannofossils – represent a valid tool within the geological archives to infer change in surface water conditions and/or coccolithophore productivity and how orbital variations may have impacted them. Here, we apply for the first time various time series analytical techniques to the nannofossil dataset from mid-latitudinal Ocean Drilling Program (ODP) Site 1209 in the northwest Pacific Ocean for the interval spanning the last 1.6 Myr. To better interpret the orbital signal recorded by different nannofossil species we used time series analyses (i.e. wavelet, autocorrelation and cross correlation) to identify the main periodicities by single nannofossil species during the MPT, and to investigate further their response timings to those orbital drivers. In addition, we investigated how the recorded periodicities can improve understanding of the paleoecological preferences of particular species. The combination of multiple time series analyses allowed identification of the 100-kyr periodicity as the main cyclicity recorded in most analyzed species at Site 1209, documenting the predominance of the eccentricity-related signal at mid-latitudes and a reduced or absent influence of the obliquity response. Thus, our data highlight how orbital influence varies by latitude impacting the nannofossil species. The lag between eccentricity and species abundance fluctuations was also investigated, identifying a fast response ranging between 20 and 40 kyr for the taxa Calcidiscus leptoporus subspecies leptoporus, Gephyrocapsa caribbeanica small, and Reticulofenestra spp. (>5 μm). This study corroborates the potential of nannofossils to deepen understanding of the dynamics and effects of variations in orbital geometry through time. It also underlines the need to extend the study of the responses of specific species through the use of different time series analysis techniques in order to return complementary information and detect clearer orbital signals

    Neurological impairment in nephropathic cystinosis: motor coordination deficits

    Get PDF
    Nephropathic cystinosis is a rare genetic metabolic disorder that results in accumulation of the amino acid cystine in lysosomes due to lack of a cystine-specific transporter protein. Cystine accumulates in cells throughout the body and causes progressive damage to multiple organs, including the brain. Neuromotor deficits have been qualitatively described in individuals with cystinosis. This study quantitatively examined fine-motor coordination in individuals with cystinosis. Brain magnetic resonance imaging (MRI) scans were also performed to determine whether structural changes were associated with motor deficits. Participants were 52 children and adolescents with infantile nephropathic cystinosis and 49 controls, ages 2–17 years, divided into preacademic and school-age groups. Results indicated that both the preacademic and school-age cystinosis groups performed significantly more poorly than their matched control groups on the Motor Coordination Test. Further, the level of performance was not significantly different between the preacademic and school-age groups. There were no significant differences in motor coordination scores based on MRI findings. This is the first study to document a persistent, nonprogressive, fine-motor coordination deficit in children and adolescents with cystinosis. The fact that these difficulties are present in the preschool years lends further support to the theory that cystinosis adversely affects neurological functioning early in development. The absence of a relationship between brain structural changes and motor function suggests that an alternative cause for motor dysfunction must be at work in this disorder

    Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale

    Get PDF
    The equation of state of cubic boron nitride (cBN) has been determined to a maximum temperature of 3300 K at a simultaneous static pressure of up to more than 70 GPa. Ab initio calculations to 80 GPa and 2000 K have also been performed. Our experimental data can be reconciled with theoretical results and with the known thermal expansion at 1 bar if we assume a small increase in pressure during heating relative to that measured at ambient temperature. The present data combined with the Raman measurements we presented earlier form the basis of a high-temperature pressure scale that is good to at least 3300 K

    Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition

    Get PDF
    We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio and M\"ossbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe

    Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell

    Get PDF
    We have used sub-picosecond laser pulses to launch ultra-high strain rate ({approx} 10{sup 9} s{sup -1}) nonlinear acoustic waves into a 4:1 methanol-ethanol pressure medium which has been precompressed in a standard diamond anvil cell. Using ultrafast interferometry, we have characterized acoustic wave propagation into the pressure medium at static compression up to 24 GPa. We find that the velocity is dependent on the incident laser fluence, demonstrating a nonlinear acoustic response which may result in shock wave behavior. We compare our results with low strain, low strain-rate acoustic data. This technique provides controlled access to regions of thermodynamic phase space that are otherwise difficult to obtain
    corecore