437 research outputs found

    FEM-Based Thermal Analysis of Underground Power Cables Located in Backfills Made of Different Materials

    No full text
    Выполнен предварительный расчет температурного поля в подземных высоковольтных линиях электропередач, которые планируется использовать в электростанции мощностью 600 МВт. Исследуется система из трех силовых кабелей, размещенных в трубах из полиэтилена низкого давления, с многослойной засыпкой (грунт и термоизолирующие материалы). Рассматриваются различные конфигурации размещения слоев засыпки. Глубина размещения силовых кабелей, измеряемая от реперной точки (0,5 м ниже уровня грунта), варьируется от 2 до 6 м, что оказывает влияние на температурное распределение в грунте, изоляционном и проводящем слоях кабелей. С использованием метода конечных элементов выполнен численный расчет установившихся температурных полей. Для дополнительного учета влияния сформированной так называемой “сухой зоны” на распределение температуры постулируется зависимость теплопроводности грунта от температуры.Виконано попередній розрахунок температурного поля в підземних високовольтних лініях електропередач, які планується використовувати в електростанції потужністю 600 МВт. Досліджується система з трьох силових кабелів, що розміщені в трубах із поліетилену низького тиску, з багатошаровою засипкою (ґрунт і термоізольовані матеріали). Розглядаються різні конфігурації розміщення шарів засипки. Глибина розміщення силових кабелів, що вимірюється від реперної точки (0,5 м нижче рівня ґрунту), варіюється від 2 до 6 м, що впливає на температурний розподіл у ґрунті, ізоляційному і провідному кабелях. Із використанням методу скінченних елементів виконано числовий розрахунок усталених температурних полів. Для додаткового врахування впливу сформованої так званої “сухої зони” на розподіл температури постулюється залежність теплопровідності ґрунту від температури

    Architecture, constraints, and behavior

    Get PDF
    This paper aims to bridge progress in neuroscience involving sophisticated quantitative analysis of behavior, including the use of robust control, with other relevant conceptual and theoretical frameworks from systems engineering, systems biology, and mathematics. Familiar and accessible case studies are used to illustrate concepts of robustness, organization, and architecture (modularity and protocols) that are central to understanding complex networks. These essential organizational features are hidden during normal function of a system but are fundamental for understanding the nature, design, and function of complex biologic and technologic systems

    The γγJ/ψJ/ψ\gamma \gamma \to J/\psi J/\psi reaction and the J/ψJ/ψJ/\psi J/\psi pair production in exclusive ultraperipheral ultrarelativistic heavy ion collisions

    Full text link
    We calculate the cross section for the γγJ/ψJ/ψ\gamma \gamma \to J/\psi J/\psi process. Two mechanisms are considered: box (two-loop) diagrams of the order of O(αem2αs2)O(\alpha_{em}^2 \alpha_s^2) and two-gluon exchange of the order of O(αem2αs4)O(\alpha_{em}^2 \alpha_s^4). The first mechanism is calculated in the heavy-quark non-relativistic approximation while the second case we also include the effects of quantum motion of quarks in the bound state. The box contribution dominates at energies close to the threshold (W<W < 15 GeV) while the two-gluon mechanism takes over at W>W > 15 GeV. Including the bound-state wave function effects for the two-gluon exchange mechanism gives a cross section 0.1 - 0.4 pb, substantially smaller than that in the non-relativistic limit (0.4 - 1.6 pb). We also find a strong infrared sensitivity which manifests itself in a rather strong dependence on the mass for the tt-channel gluons. The elementary cross section is then used in the Equivalent Photon Approximation (EPA) in the impact parameter space to calculate the cross section for 208Pb+208Pb208Pb+J/ψJ/ψ+208Pb^{208}Pb+^{208}Pb \to ^{208}Pb + J/\psi J/\psi + ^{208}Pb reaction. Distributions in rapidity of the J/ψJ/ψJ/\psi J/\psi pair and invariant mass of the pair are shown.Comment: 15 pages, 11 figure

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    A simple optogenetic MAPK inhibitor design reveals resonance between transcription-regulating circuitry and temporally-encoded inputs

    Get PDF
    Engineering light-sensitive protein regulators has been a tremendous multidisciplinary challenge. Optogenetic regulators of MAPKs, central nodes of cellular regulation, have not previously been described. Here we present OptoJNKi, a light-regulated JNK inhibitor based on the AsLOV2 light-sensor domain using the ubiquitous FMN chromophore. OptoJNKi genetransfer allows optogenetic applications, whereas protein delivery allows optopharmacology. Development of OptoJNKi suggests a design principle for other optically regulated inhibitors. From this, we generate Optop38i, which inhibits p38MAPK in intact illuminated cells. Neurons are known for interpreting temporally-encoded inputs via interplay between ion channels, membrane potential and intracellular calcium. However, the consequences of temporal variation of JNK-regulating trophic inputs, potentially resulting from synaptic activity and reversible cellular protrusions, on downstream targets are unknown. Using OptoJNKi, we reveal maximal regulation of c-Jun transactivation can occur at unexpectedly slow periodicities of inhibition depending on the inhibitor's subcellular location. This provides evidence for resonance in metazoan JNK-signalling circuits

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain

    Get PDF
    We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain

    Exploring Action Dynamics as an Index of Paired-Associate Learning

    Get PDF
    Much evidence exists supporting a richer interaction between cognition and action than commonly assumed. Such findings demonstrate that short-timescale processes, such as motor execution, may relate in systematic ways to longer-timescale cognitive processes, such as learning. We further substantiate one direction of this interaction: the flow of cognition into action systems. Two experiments explored match-to-sample paired-associate learning, in which participants learned randomized pairs of unfamiliar symbols. During the experiments, their hand movements were continuously tracked using the Nintendo Wiimote. Across learning, participant arm movements are initiated and completed more quickly, exhibit lower fluctuation, and exert more perturbation on the Wiimote during the button press. A second experiment demonstrated that action dynamics index novel learning scenarios, and not simply acclimatization to the Wiimote interface. Results support a graded and systematic covariation between cognition and action, and recommend ways in which this theoretical perspective may contribute to applied learning contexts

    Interferences in the Transformation of Reference Frames during a Posture Imitation Task

    Get PDF
    We present a biologically-inspired neural model addressing the problem of transformations across frames of reference in a posture imitation task. Our modeling is based on the hypothesis that imitation is mediated by two concurrent transformations selectively sensitive to spatial and anatomical cues. In contrast to classical approaches, we also assume that separate instances of this pair of transformations are responsible for the control of each side of the body. We also devised an experimental paradigm which allowed us to model the interference patterns caused by the interaction between the anatomical on one hand, and the spatial imitative strategy on the other hand. The results from our simulation studies thus provide predictions of real behavioral responses
    corecore