
Interferences in the Transformation of ReferenceFrames during a Posture Imitation TaskEric L. Sauser and Aude G. BillardLearning Algorithms and Systems Laboratory, LASAEcole Polytechnique Fédérale de Lausanne, EPFL, Switzerland{eric.sauser,aude.billard}@epfl.chAbstract. We present a biologically-inspired neural model addressingthe problem of transformations across frames of reference in a postureimitation task. Our modeling is based on the hypothesis that imitationis mediated by two concurrent transformations selectively sensitive tospatial and anatomical cues. In contrast to classical approaches, we alsoassume that separate instances of this pair of transformations are re-sponsible for the control of each side of the body. We also devised anexperimental paradigm which allowed us to model the interference pat-terns caused by the interaction between the anatomical on one hand, andthe spatial imitative strategy on the other hand. The results from oursimulation studies thus provide predictions of real behavioral responses.1 IntroductionAlthough imitation has been extensively addressed in developmental psychology,it has become a current topic in neuroscience and experimental psychology [1,3,4,8,9,11]. The starting point of these investigations was the discovery, in monkeyand human brain, of mirror neurons (MN), which are activated by both theexecution and the observation of goal-directed actions [1, 9, 11]. In humans, theMN circuit, gets also activated during the presentation of meaningless gestures orbody postures [9]. In this work, we focus on the process of transformation acrossframes of reference, required for imitation of arbitrary gestures. In psychology,anatomical and spatial types of imitation are usually considered distinct [5, 8,9]. On one hand, anatomical imitation considers the observed movements withrespect to the observed person's body. On the other hand, spatial imitationconsiders only the spatial location of the limbs with respect to the observer,regardless of the orientation of the demonstrator. When the imitator and thedemonstrator are facing each other, this form of imitation is usually denoted asspecular or mirror [4, 5, 9].We hypothesize that the computations associated with these two forms of im-itation are simultaneously computed in the brain. Given the task constraints, acompetitive process then selects the correct response [4,5,12]. Such a competitionusually produces measurable interferences on reaction times [4,5,8]. In additionto the previous hypothesis, we suggest that anatomical imitation should not beconsidered too strictly. We propose here that an anatomical mapping betweencontralateral limbs, which mirrors the relationship between the limb joint, alsoexists. Therefore, our model assumes that distinct pairs of spatial and anatomical
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transformations are responsible of the control of each side of the body. As a con-sequence, when an arm posture is presented with either the left or the right armfor example, an imitative response is computed in parallel for both arms of theimitator. Here, we apply a biologically-inspired modeling approach, known asthe Dynamic Field Theory [7, 12], to the problem of con�icting transformationsacross frames of reference. We will �rst present an experimental paradigm whichwill help determine the interferences between di�erent imitative strategies dur-ing a task requiring the imitation of meaningless body postures. Then, we willbrie�y describe a neural model, capable of computing both anatomical and spa-tial imitative transformations. Finally, we will discuss the particular interferencepatterns predicted by our model and their implications for future research.2 Model2.1 Experimental Scenario and Setup
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Fig. 1. Experimental variablesand considered frames of reference(FR). .

We consider the imitation of body postureswhere the orientation of the right upper armis varied. The visual perspective of the demon-strator's body can also vary from side to frontview. The task instructions require either aspatial or an anatomical imitative responsewith either the right arm (the correspondingone) or the left arm (the opposite one). Thestimulus variables, shown in Figure 1, are: ϕD,the demonstrator arm elevation, θD, its orien-tation relative to the body in the horizontalplane, and φD, the orientation of the bodywith respect to the observer. The responsevariables are: ϕI
L and ϕI

R, the elevation of theleft and right arm of the imitator, and θI
L and

θI
R, their orientations on the horizontal plane.The desired responses are:

θI,A
L = θI,A

R = θD

θI,S
L = −θI,S

R =


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−180 − (θD + φD) θD + φD < −90
θD + φD |θD + φD| ≤ 90

180 − (θD + φD) θD + φD > 90

(1)where the additional index, A or S, denotes the anatomical or the spatial imi-tative strategy, respectively. An illustration of these transformations are shownin Figure 2. Let us then de�ne the discrepancy D between the response of bothstrategies, which is is given by the di�erence between the response of the in-structed strategy and that of the other. Spatial and anatomical transformationsare said to be perfectly congruent when the discrepancy D = 0. Note that idealcongruency conditions are not equivalent for both arms.An experimental trial consists �rst of the presentation of a starting posturewhich the model is requested to imitate according to the task instructions. Then,



the arm posture is abruptly changed, and the subject has to keep imitating as fastas possible. During a single trial, only the arm posture is modi�ed, whereas thebody orientation is left unchanged. Experiment 1 investigates the interferencesproduced by both imitative strategies when their initial responses are congruentand the amplitude of the change of arm posture is kept constant across the trials.The pair of initial and target postures consists of the arm raising from a neutraldown position (ϕD = 0◦), where the responses of both transformations are alwayscongruent, to a position on the horizontal plane (ϕD = 90◦). The arm elevation isthus the only degree of freedom which changes during a trial. Complementarily,Experiment 2 investigates the in�uence of a horizontal postural change, whichamount is denoted by ∆θD. Indeed, in such conditions, depending on the stimuli,the discrepancy between the responses of the transformations may vary.
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Fig. 2. Examples of anatomical and spatial imitative strategies in various conditions.The discrepancy between the response of the transformations are given for each arm.2.2 Neural �eldsThis section brie�y describes our model, which is composed of networks knownas neural �elds [7, 12]. Formally, a neural �eld is composed of a continuous setof neurons, where each of them �res maximally for a speci�c value r uniformlydistributed in the parameter space Γ . Since the modeled variables consist of armand body orientations, we consider the parameter space as the ensemble of di-rections in the three dimensional space, i.e, Γ = {r ∈ R
3| ‖r‖ = 1}. Each neuronof the network is fully connected by means of recurrent synaptic weights WR,exhibiting symmetry, rotational invariance and center-surround characteristics.The neural �eld dynamics follows

τ u̇(r, t) = −u(r, t) + x(r, t) + h(t) +

∮

Γ

WR(r′, r) f
(

u(r′, t)
)

dr′ (2)where u(r, t) ∈ R is the membrane potential of the neuron with time constant τ ∈
R and the preferred direction r at time t. f(y) = max(0, y), x(r, t) corresponds tothe external input and h(t) to a global modulatory input. The weight linking twoneurons, with preferred directions r′ and r, is given by a periodical Gaussian-likepro�le de�ned as

WR(r′, r) = αR
(

g(r′, r) − 1
)

where g(r′, r) =
1

κ
exp

(

(Mr′)T r − 1

2σ2

)(3)
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Fig. 3. (Left) Graphical representation of a neural�eld activity. (Right) Evolution of the neural activ-ity during a selection process involving two compet-ing inputs (top), and between two partially overlap-ping inputs (bottom).

αR > 0 and σ > 0 are, re-spectively, the amplitude andvariance of the weight pro-�le. M refers to a transfor-mation or mapping matrix.In this case M = I, i.e.,the identity matrix, but dif-ferent mappings will be de-scribed later in the text. κ =
1 − e−

1

σ
2 is a normalizationfactor ensuring that g(r′, r) ∈

[0, 1]. This type of neural dy-namics is known to form anattractor bump on the surfaceof the neural �eld (see Fig. 3),through which this class of networks is suggested to convey information. As aread-out mechanism, we consider the population vector p̂(t) ∈ Γ . It consists of aweighted summation of the �ring rate of each neuron with its preferred directionand is given by
p̂(t) = p(t)/‖p(t)‖ where p(t) =

∮

Γ

f
(

u(r, t)
)

r dr (4)Moreover, we de�ne E(t) = ‖p(t)‖ as the energy of the network response. Sincefurther in the text we consider several neural �elds within a large network, we willdenote with an index i the network variables corresponding to those of a neural�eld i. The external input xi(r, t) can be composed of a direct sensory inputand of synaptic projections from one or several di�erent neural �elds. A sensoryinput is constrained to represent a variable value s(t) ∈ Γ , and projection froma population j to a population i is done through synaptic weights W ji. Theexternal input of a neural �eld i is then written as
xi(r, t) = βi

(

g(r, si(t)) − η
)

+
∑

j

∮

Γ

W ji(r′, r) f
(

uj(r′, t)
)

dr′ where

W ji(r′, r) = αji
(

g(r′, r) − ηji
) (5)where βi is the strength of the representation of the sensory variable si(t), ηji isa normalization term, and αji > 0 is the amplitude of the weights. Similarly, themodulatory input hi(t) can consist of a constant input or of synaptic projectionsfrom other neural populations. In the latter case, we have

hi(t) =
∑

j

∮

Γ

W ji(r′, ri) f
(

uj(r′, t)
)

dr′ (6)where ri ∈ Γ is constant and W ji corresponds to that de�ned in Equ. (5).2.3 Network ArchitectureThe model architecture, depicted in Figure 4, consists of two networks, one foreach arm. Within a single network, two main streams process separately the
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Fig. 4. Architecture of the model: Within each network corresponding to a given arm,two streams compute separately the anatomical and the spatial transformations.spatial and the anatomical transformation. Their outputs are projected to acompetitive network to select the appropriate response. Since the task instruc-tions specify which arm should be used, the model does not perform the selectionof the e�ector.As external inputs, the two streams receive visual input in the form of thearm and body orientation vectors sArm and sBody ∈ Γ , relative to the referenceframe of the observer (shown in Fig. 1):
sArm =

(

sin(ϕD) sin(θD + φD) , cos(ϕD) , − sin(ϕD) cos(θD + φD)
)T

sBody =
(

sin(φD) , 0 , − cos(φD)
)T (7)These inputs are fed into the input populations of each transformation accordingto Equ. (5). Note that the spatial transformation does not need the orientation ofthe demonstrator's body. The input populations also receive an external modu-lation applied asymmetrically to each stream. According to the task instructions,the inputs of the relevant network receive a positive modulation, whereas thoseof the other receive inhibition, i.e., hTask and −(hTask +∆h), respectively, where

hTask > 0 is a constant, and ∆h ∈ {0, ∆h0}. When ∆h = ∆h0 � 0, the networkcorresponding to the irrelevant transformation is completely inhibited. This case,where only the relevant transformation is active, is considered as the baselinecondition.The spatial transformation consists of mapping the orientation of the demon-strator's arm with the imitator's left and right arm, regardless of the demon-strator's body. For a given arm, two neural populations are required. The formerreceives the visual input and is connected to the latter through synaptic projec-tions. Using Eqs. (1) and (5), the correct mapping functions for the left and theright arm are given by M = ML,Sp and M = MR,Sp, respectively, where
M

L,Sp =

{

diag(1, 1,−1) sArm
z < 0

I otherwise
and M

R,Sp = diag(−1, 1, 1)ML,Sp (8)



Since the frames of references of each arm are symmetric, so are the mappingmatrices.The anatomical transformation requires the combination of the orientationof the demonstrator's arm and that of his/her body. Neurophysiological datasuggest that such a transformation is performed through gain �elds, which areneural populations combining inputs from several external sources [13]. We de�nea gain �eld as a continuous set of neural �elds denoted by GFφ, where each ofthem is preferentially tuned to a speci�c body orientation φ. The populationencoding the demonstrator's arm orientation projects to each of them usingEqu. (5) with mapping function M = Ry(−φ), where Ry(−φ) is the rotationmatrix around axis Y with angle −φ. The body orientation is fed to the sub�eldsthrough their modulatory input hGFφ(t) according to Equ. (6), with M = I and
rGFφ = (sin φ, 0,−cosφ). The gain �eld projects to the output population of thetransfromation by synaptic projections with M = I.The response selection is performed by a neural �eld receiving projectionsfrom the output population of both transformations. The competition arisesnaturally as an e�ect of the network recurrent connectivity, producing a winner-take-all type of operation [7, 12]. As illustrated in Figure 3, according to theintrinsic distance metric given by the breadth σ of the recurrent connections,close and overlapping inputs tend to average whereas distant ones compete. Inour model, since the output strength of both streams are asymmetrically bal-anced, the correct response is always selected by the network. The network alsoreceives a go signal by means of its modulatory input. Prior to the presentationof the target posture, hSel(t) = −hGo � 0 so that the neural �eld is completelyinactive. When the target posture is presented, the network is uninhibited, i.e.,
hSel(t) = 0, and the selection process begins. The network response is read-outusing the population vector (Equ. (4)), which directly represents the selectedarm posture in the frame of reference of the imitator.3 ResultsWe simulated the two experiments described in Section 2.1. The demonstrator'sarm and body postures, were systematically varied across each trial during bothexperiments1. Moreover, in experimental conditions involving the use of the leftarm, the subnetwork corresponding to the right arm was not considered, andvice versa.1 The respective range of arm and body orientations are θD ∈ {k · 22.5◦|k ∈ {0..8}}and φD ∈ {k · 22.5◦|k ∈ {0..15}}. The amplitude of postural change in Exp. 2 is inthe range ∆θD ∈ {k · 22.5◦|k ∈ {1..8}}. The model parameters are: the amplitudesof the weights, αR = 12, αSArm,SOut = αAArm,GFφ = αGFφ,AOut = 5.4, αABody,GFφ =

8.0, and αAOut,Sel = αSOut,Sel = 5.0; the breadth of the weights pro�les and theiro�set, unless speci�ed, σ = 0.5 and η =
∮

Γ
g(r, r′) dr, then σABody,GFφ = ∞ and

ηAArm,GFφ = 1.0; the amplitude of the inputs, βSArm = βAArm = βABody = 0.5.These parameters were chosen so that the response energy of both transformationsare equal for an equivalent task modulation. Finally, the task modulatory inputs andgo signal are, hTask = 0.5, ∆h0 = 0.75 and hGo = 1.5.



3.1 Reaction Times and AccuracyThe mean reaction times and the errors resulting from the transformations weremeasured in both experiments. Reaction times (RT) were de�ned as the timewhen the response energyE(t) of the selection network reached a given threshold,whereas the transformation errors (Err) were de�ned as the angular distancebetween the population vector response p̂(t) after network convergence, andthe correct target position. Moreover, since we do not model the dynamics ofarm movements, reaction times should be considered to be times of movementinitiation rather than times of movement completion.
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Fig. 5. a) Mean reaction times and b) transformation errors observed in both ex-periments. c) Reaction times during Experiment 2 in the baseline conditions shownaccording to the amount of postural change ∆θD.As reported in Figure 5a, in both experiments, the average reaction times inanatomical conditions were longer than in the spatial task. Indeed, the formertransformation requires more computations. In addition, a slight, but not sig-ni�cant increase in average reaction times can be noticed when comparing thenormal condition with the baseline. Nevertheless, a di�erence between these con-ditions was observed on the transformation errors (see Fig. 5b). Indeed, a compe-tition between the parallel transformations results in larger errors. In Experiment2, the amplitude of the postural change ∆θD was di�erent across trials. The re-action times dependency on this experimental variable in the baseline conditionsis shown in Figure 5c. For small postural changes, reaction times were longer,but then decreased for larger ∆θD. This e�ect is caused by the center-surroundrecurrence in the neural dynamics, resulting in longer convergence times whenmoving from one attractor state to another, which is su�ciently close.3.2 Interference Patterns
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Then, we were interested in determin-ing the interference patterns resultingfrom the competition between the twotransformations. The reaction timesand transformation errors were con-sidered relative to the baseline con-ditions. Let us denote them, respec-tively, by ∆RT = RT − RT0, and
∆Err = Err − Err0, where RT0 and



Err0 correspond to the reaction times and errors measured in the baseline con-ditions. In Figure 6, data from Experiment 1 are given according to the discrep-ancy D between the responses of the anatomical on one hand, and the spatialtransformation on the other hand. First, since the processing time of the spatialtransformation is shorter, it interferes earlier with the anatomical transforma-tion, and conversely. As an e�ect, the strength of the interferences on reactiontimes were globally higher in anatomical conditions. Next, the reaction timesincreased with the discrepancy between the responses, whereas transformationerrors behaved slightly di�erently. The errors did also increase with the discrep-ancy, but only within a small range. For outermost distances, they decreased untilapproximately zero. This e�ect is the result of the averaging of close responseson the neural �eld. Similar e�ects were observed in Experiment 2 (see Fig. 7),
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4 DiscussionIn this paper, we have presented a biologically-inspired neural model addressingthe problem of transformations across frames of reference in a posture imitationtask. Our modeling is based on the hypothesis that such an imitation process ismediated by two concurrent transformations, corresponding to the spatial andthe anatomical imitative strategies [4, 5, 12]. We also devised an experimentalparadigm which allowed us to measure the interference patterns that the inter-action between the anatomical on one hand, and the spatial imitative strategy onthe other hand produced. In addition, we also assumed that separate instancesof the pair of transformations are responsible for the control of each side of thebody. Since our experiments did not involve the use of both arms simultane-ously, this latter hypothesis does not rule out the fact that the processes of eacharm may be coupled and located within a single brain region [1,9]. As such, ourresults provide predictions of real behavioral responses.Similar to other works which applied the Dynamic Field approach [7,12], ourwork goes beyond usual binary models, often proposed in experimental psychol-ogy [14]. Besides the fact that this framework allows the modeling of continuousstimulus variables and responses, which are more common in imitative behav-iors, it is of high biological signi�cance. Neurophysiological studies have shownthat, in the superior temporal sulcus, body and arm postures are encoded intoneural populations where each neuron exhibits tuning to a speci�c posture [2].Similarly distributed representations, and correlates of decisional processes havealso been reported in many other sensorimotor brain areas [6, 10, 13]. Together,these �ndings strengthen our approach by grounding it on a strong biologicalbasis.Behavioral studies on imitation report greater interferences during taskswhere the spatial transformation is irrelevant, as compared to tasks where ana-tomical imitation has to be avoided [4, 5, 8]. Our model supports this obser-vation, but explains it in terms of the longer processing time required by theanatomical imitative strategy, which needs to process an additional variable.Usual accounts for the greater in�uence of the spatial transformation considerprimarily a stronger linkage with the decisional process [4,5,9,14]. Although bothhypotheses are compatible, one may be interested in determining their respectivein�uence, which would need more investigations.Our modeling study also showed that combining of transformations producesinterferences. One may wonder why the nervous system would use a combinationof two strategies for solving imitation tasks since they produce interferences. Oursimulations show that, in speci�c conditions, their interaction result in positivee�ects. For instance, when the imitator and the demonstrator are face to face,mirror imitation is faster, whereas anatomical imitation is more e�ective whenthe imitator looks at the back of the demonstrator. From this, we can proposean alternative hypothesis explaining that, in unconstrained conditions and whenpeople are facing each other, mirror imitation is the most usual strategy forcopying meaningless gestures [3]. Rather than assuming that mirror imitationhas a stronger in�uence on the selection process [4, 8, 9], we suggest that thisstrategy is the one which exhibits the maximal congruency between the con-
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