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Abstract. We present a biologically-inspired neural model addressing
the problem of transformations across frames of reference in a posture
imitation task. Our modeling is based on the hypothesis that imitation
is mediated by two concurrent transformations selectively sensitive to
spatial and anatomical cues. In contrast to classical approaches, we also
assume that separate instances of this pair of transformations are re-
sponsible for the control of each side of the body. We also devised an
experimental paradigm which allowed us to model the interference pat-
terns caused by the interaction between the anatomical on one hand, and
the spatial imitative strategy on the other hand. The results from our
simulation studies thus provide predictions of real behavioral responses.

1 Introduction

Although imitation has been extensively addressed in developmental psychology,
it has become a current topic in neuroscience and experimental psychology [1,3,4,
8,9,11]. The starting point of these investigations was the discovery, in monkey
and human brain, of mirror neurons (MN), which are activated by both the
execution and the observation of goal-directed actions [1,9,11]. In humans, the
MN circuit, gets also activated during the presentation of meaningless gestures or
body postures [9]. In this work, we focus on the process of transformation across
frames of reference, required for imitation of arbitrary gestures. In psychology,
anatomical and spatial types of imitation are usually considered distinct [5,8,
9]. On one hand, anatomical imitation considers the observed movements with
respect to the observed person’s body. On the other hand, spatial imitation
considers only the spatial location of the limbs with respect to the observer,
regardless of the orientation of the demonstrator. When the imitator and the
demonstrator are facing each other, this form of imitation is usually denoted as
specular or mirror [4,5,9].

We hypothesize that the computations associated with these two forms of im-
itation are simultaneously computed in the brain. Given the task constraints, a
competitive process then selects the correct response [4,5,12]. Such a competition
usually produces measurable interferences on reaction times [4,5,8]. In addition
to the previous hypothesis, we suggest that anatomical imitation should not be
considered too strictly. We propose here that an anatomical mapping between
contralateral limbs, which mirrors the relationship between the limb joint, also
exists. Therefore, our model assumes that distinct pairs of spatial and anatomical
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transformations are responsible of the control of each side of the body. As a con-
sequence, when an arm posture is presented with either the left or the right arm
for example, an imitative response is computed in parallel for both arms of the
imitator. Here, we apply a biologically-inspired modeling approach, known as
the Dynamic Field Theory [7,12], to the problem of conflicting transformations
across frames of reference. We will first present an experimental paradigm which
will help determine the interferences between different imitative strategies dur-
ing a task requiring the imitation of meaningless body postures. Then, we will
briefly describe a neural model, capable of computing both anatomical and spa-
tial imitative transformations. Finally, we will discuss the particular interference
patterns predicted by our model and their implications for future research.
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where the additional index, A or S, denotes the anatomical or the spatial imi-
tative strategy, respectively. An illustration of these transformations are shown
in Figure 2. Let us then define the discrepancy D between the response of both
strategies, which is is given by the difference between the response of the in-
structed strategy and that of the other. Spatial and anatomical transformations
are said to be perfectly congruent when the discrepancy D = 0. Note that ideal
congruency conditions are not equivalent for both arms.

An experimental trial consists first of the presentation of a starting posture
which the model is requested to imitate according to the task instructions. Then,



the arm posture is abruptly changed, and the subject has to keep imitating as fast
as possible. During a single trial, only the arm posture is modified, whereas the
body orientation is left unchanged. Experiment 1 investigates the interferences
produced by both imitative strategies when their initial responses are congruent
and the amplitude of the change of arm posture is kept constant across the trials.
The pair of initial and target postures consists of the arm raising from a neutral
down position (o = 0°), where the responses of both transformations are always
congruent, to a position on the horizontal plane (¢ = 90°). The arm elevation is
thus the only degree of freedom which changes during a trial. Complementarily,
Experiment 2 investigates the influence of a horizontal postural change, which
amount is denoted by A#P. Indeed, in such conditions, depending on the stimuli,
the discrepancy between the responses of the transformations may vary.
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Fig. 2. Examples of anatomical and spatial imitative strategies in various conditions.
The discrepancy between the response of the transformations are given for each arm.
2.2 Neural fields

This section briefly describes our model, which is composed of networks known
as neural fields [7,12]. Formally, a neural field is composed of a continuous set
of neurons, where each of them fires maximally for a specific value r uniformly
distributed in the parameter space I'. Since the modeled variables consist of arm
and body orientations, we consider the parameter space as the ensemble of di-
rections in the three dimensional space, i.e, I' = {r € R3| ||r|| = 1}. Each neuron
of the network is fully connected by means of recurrent synaptic weights W%,
exhibiting symmetry, rotational invariance and center-surround characteristics.
The neural field dynamics follows

Tu(r,t) = —u(r,t) + z(r,t) + h(t) + %F WHE r) fu(r' 1)) dr'  (2)

where u(r,t) € R is the membrane potential of the neuron with time constant 7 €
R and the preferred direction r at time ¢. f(y) = max(0,y), (r,t) corresponds to
the external input and h(¢) to a global modulatory input. The weight linking two
neurons, with preferred directions 7’ and r, is given by a periodical Gaussian-like
profile defined as

7 T,r _
WR('I"/,’I‘) — R (g(r/v,’,) _ 1) where g('l"/,’f’) = % exp <W2{71) (3)



o® > 0 and 0 > 0 are, re- Competing nputs Winning input
spectively, the amplitude and
variance of the weight pro-
file. M refers to a transfor-
mation or mapping matrix.
In this case M = 1, i.e.,
the identity matrix, but dif-
ferent mappings will be de-
scribedllater in the text. Kk =
1 —e -2 is a normalization
factor ensuring that g(r',7) €
[0, 1]. This type of neural dy-
namics is known to form an
attractor bump on the surface
of the neural field (see Fig. 3),
through which this class of networks is suggested to convey information. As a
read-out mechanism, we consider the population vector p(t) € I'. It consists of a
weighted summation of the firing rate of each neuron with its preferred direction
and is given by

p(t) =p@)/|p(@®)[l  where p(t) = jgf(U(T,t))rdr (4)
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Fig. 3. (Left) Graphical representation of a neural
field activity. (Right) Evolution of the neural activ-
ity during a selection process involving two compet-
ing inputs (top), and between two partially overlap-
ping inputs (bottom).

Moreover, we define E(t) = ||p(t)|| as the energy of the network response. Since
further in the text we consider several neural fields within a large network, we will
denote with an index i the network variables corresponding to those of a neural
field i. The external input z‘(r,t) can be composed of a direct sensory input
and of synaptic projections from one or several different neural fields. A sensory
input is constrained to represent a variable value s(t) € I', and projection from
a population j to a population i is done through synaptic weights W7¢. The
external input of a neural field ¢ is then written as

z'(r,t) = B (g(r,s'(t) —n) + ZﬁWji(r’,r) f(W(r',t)) dr’  where

W7(r' r) = o (g(r',r) —0"") (5)

where /3% is the strength of the representation of the sensory variable s'(t), n’* is
a normalization term, and a/* > 0 is the amplitude of the weights. Similarly, the
modulatory input h*(¢) can consist of a constant input or of synaptic projections
from other neural populations. In the latter case, we have

hi(t) = Z ﬁ W (r! e f(ud (¢, 1)) dr’ (6)

where 7! € I is constant and W/¢ corresponds to that defined in Equ. (5).

2.3 Network Architecture
The model architecture, depicted in Figure 4, consists of two networks, one for
each arm. Within a single network, two main streams process separately the
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Fig. 4. Architecture of the model: Within each network corresponding to a given arm,
two streams compute separately the anatomical and the spatial transformations.

spatial and the anatomical transformation. Their outputs are projected to a
competitive network to select the appropriate response. Since the task instruc-
tions specify which arm should be used, the model does not perform the selection
of the effector.

As external inputs, the two streams receive visual input in the form of the
arm and body orientation vectors s*™ and sB°® € I, relative to the reference
frame of the observer (shown in Fig. 1):

sAm = (sin(P) sin(6P + ¢P) , cos(P) , — sin(P) cos(6P + ¢P) )"

sBody = ( sin(¢P) .0 , —cos(¢?) )T (7)

These inputs are fed into the input populations of each transformation according
to Equ. (5). Note that the spatial transformation does not need the orientation of
the demonstrator’s body. The input populations also receive an external modu-
lation applied asymmetrically to each stream. According to the task instructions,
the inputs of the relevant network receive a positive modulation, whereas those
of the other receive inhibition, i.e., KT8k and —(hT8k 4- Ap), respectively, where
hTak > 0 is a constant, and Ah € {0, Ahg}. When Ah = Ahg > 0, the network
corresponding to the irrelevant transformation is completely inhibited. This case,
where only the relevant transformation is active, is considered as the baseline
condition.

The spatial transformation consists of mapping the orientation of the demon-
strator’s arm with the imitator’s left and right arm, regardless of the demon-
strator’s body. For a given arm, two neural populations are required. The former
receives the visual input and is connected to the latter through synaptic projec-
tions. Using Eqgs. (1) and (5), the correct mapping functions for the left and the
right arm are given by M = M™SP and M = M®™5P  respectively, where
AP {?iag(LL—l) shm <0

otherwise and M™% = = diag(—1,1, I)ML’Sp (8)



Since the frames of references of each arm are symmetric, so are the mapping
matrices.

The anatomical transformation requires the combination of the orientation
of the demonstrator’s arm and that of his/her body. Neurophysiological data
suggest that such a transformation is performed through gain fields, which are
neural populations combining inputs from several external sources [13]. We define
a gain field as a continuous set of neural fields denoted by GF¢, where each of
them is preferentially tuned to a specific body orientation ¢. The population
encoding the demonstrator’s arm orientation projects to each of them using
Equ. (5) with mapping function M = R,(—¢), where R,(—¢) is the rotation
matrix around axis Y with angle —¢. The body orientation is fed to the subfields
through their modulatory input hSF¢(¢) according to Equ. (6), with M = I and
r&F?® = (sin ¢, 0, —cos ¢). The gain field projects to the output population of the
transfromation by synaptic projections with M = I.

The response selection is performed by a neural field receiving projections
from the output population of both transformations. The competition arises
naturally as an effect of the network recurrent connectivity, producing a winner-
take-all type of operation [7,12]. As illustrated in Figure 3, according to the
intrinsic distance metric given by the breadth o of the recurrent connections,
close and overlapping inputs tend to average whereas distant ones compete. In
our model, since the output strength of both streams are asymmetrically bal-
anced, the correct response is always selected by the network. The network also
receives a go signal by means of its modulatory input. Prior to the presentation
of the target posture, h5¢'(t) = —hG° < 0 so that the neural field is completely
inactive. When the target posture is presented, the network is uninhibited, i.e.,
hSel(t) = 0, and the selection process begins. The network response is read-out
using the population vector (Equ. (4)), which directly represents the selected
arm posture in the frame of reference of the imitator.

3 Results

We simulated the two experiments described in Section 2.1. The demonstrator’s
arm and body postures, were systematically varied across each trial during both
experiments'. Moreover, in experimental conditions involving the use of the left
arm, the subnetwork corresponding to the right arm was not considered, and
vice versa.

! The respective range of arm and body orientations are 8 € {k - 22.5°|k € {0..8}}
and ¢” € {k-22.5°|k € {0..15}}. The amplitude of postural change in Exp. 2 is in
the range A0 € {k-22.5°|k € {1..8}}. The model parameters are: the amplitudes
of the weights, aff = 12, aSarm:Sout = gAam GFé — (CFé.Aow — 5 4 oABoay CF¢ —
8.0, and aftoutSel = gSousSel — 5 (0 the breadth of the weights profiles and their
offset, unless specified, ¢ = 0.5 and n = frg(nr')dr, then g*Bedy GF® — 5o and
piam:GFé — 1 0. the amplitude of the inputs, f54m = gAam = gABeay = (.5,
These parameters were chosen so that the response energy of both transformations
are equal for an equivalent task modulation. Finally, the task modulatory inputs and
go signal are, K™% = 0.5, Ahy = 0.75 and h®° = 1.5.



3.1 Reaction Times and Accuracy

The mean reaction times and the errors resulting from the transformations were
measured in both experiments. Reaction times (RT) were defined as the time
when the response energy F(t) of the selection network reached a given threshold,
whereas the transformation errors (Err) were defined as the angular distance
between the population vector response p(t) after network convergence, and
the correct target position. Moreover, since we do not model the dynamics of
arm movements, reaction times should be considered to be times of movement
initiation rather than times of movement completion.

Experiments | and 2 Experiments | and 2 Experiment 2: Bascline condition
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Fig.5. a) Mean reaction times and b) transformation errors observed in both ex-

periments. ¢) Reaction times during Experiment 2 in the baseline conditions shown
according to the amount of postural change A9”.

As reported in Figure 5a, in both experiments, the average reaction times in
anatomical conditions were longer than in the spatial task. Indeed, the former
transformation requires more computations. In addition, a slight, but not sig-
nificant increase in average reaction times can be noticed when comparing the
normal condition with the baseline. Nevertheless, a difference between these con-
ditions was observed on the transformation errors (see Fig. 5b). Indeed, a compe-
tition between the parallel transformations results in larger errors. In Experiment
2, the amplitude of the postural change A9” was different across trials. The re-
action times dependency on this experimental variable in the baseline conditions
is shown in Figure 5c. For small postural changes, reaction times were longer,
but then decreased for larger A9”. This effect is caused by the center-surround
recurrence in the neural dynamics, resulting in longer convergence times when
moving from one attractor state to another, which is sufficiently close.

Relative Reaction Times Relative Transformation Errors

3.2 Interference Patterns
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Then, we were interested in determin-
ing the interference patterns resulting
from the competition between the two

transformations. The reaction times T e
and transformation errors were con- =5 A
sidered relative to the baseline con-

ditions. Let us denote them, respec- Fig. 6. Results of Experiment 1: Reaction
tively, by ART = RT — RTy, and times and transformation errors relative to
AErr = Err — Errg, where RTy and the baseline condition are shown.




Errg correspond to the reaction times and errors measured in the baseline con-
ditions. In Figure 6, data from Experiment 1 are given according to the discrep-
ancy D between the responses of the anatomical on one hand, and the spatial
transformation on the other hand. First, since the processing time of the spatial
transformation is shorter, it interferes earlier with the anatomical transforma-
tion, and conversely. As an effect, the strength of the interferences on reaction
times were globally higher in anatomical conditions. Next, the reaction times
increased with the discrepancy between the responses, whereas transformation
errors behaved slightly differently. The errors did also increase with the discrep-
ancy, but only within a small range. For outermost distances, they decreased until
approximately zero. This effect is the result of the averaging of close responses
on the neural field. Similar effects were observed in Experiment 2 (see Fig. 7),
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Fig. 7. Results of Experiment 2: Reaction times relative to the baseline condition. On
top of each plot, examples of experimental conditions are shown. In each case, the
largest arrow corresponds to the response of the relevant transformation.

i.e., the interference patterns were globally more important under anatomical
conditions and the error patterns also depended on the discrepancy between the
responses. Further, the interference patterns on reaction times exhibited a com-
bination of the effects of both the discrepancy D between the responses and the
amount AP of arm postural change that were shown earlier in Figure 5¢ and 6.
In conditions close to ideal congruency between the transformations, a general
facilitatory effect was primarily produced which was even stronger for mid-range
distances. In addition, an interaction between both variables on reaction times
was observed. It produced a small shift of the interference pattern relative to
the discrepancy D, which depended on A#P. In anatomical conditions, when
the response of the spatial transformation is in the course of that of the ana-
tomical transformation, the facilitory effect is strengthened, whereas when the
former is located at a distance, it is weakened. Since this dependency between
the responses is primarily caused by the difference in processing times, its effect
is reversed in spatial conditions. Finally, because the errors were measured after
network convergence, they were not different from those reported in Experiment
1 (see Fig. 6).



4 Discussion

In this paper, we have presented a biologically-inspired neural model addressing
the problem of transformations across frames of reference in a posture imitation
task. Our modeling is based on the hypothesis that such an imitation process is
mediated by two concurrent transformations, corresponding to the spatial and
the anatomical imitative strategies [4,5,12]. We also devised an experimental
paradigm which allowed us to measure the interference patterns that the inter-
action between the anatomical on one hand, and the spatial imitative strategy on
the other hand produced. In addition, we also assumed that separate instances
of the pair of transformations are responsible for the control of each side of the
body. Since our experiments did not involve the use of both arms simultane-
ously, this latter hypothesis does not rule out the fact that the processes of each
arm may be coupled and located within a single brain region [1,9]. As such, our
results provide predictions of real behavioral responses.

Similar to other works which applied the Dynamic Field approach [7,12], our
work goes beyond usual binary models, often proposed in experimental psychol-
ogy [14]. Besides the fact that this framework allows the modeling of continuous
stimulus variables and responses, which are more common in imitative behav-
iors, it is of high biological significance. Neurophysiological studies have shown
that, in the superior temporal sulcus, body and arm postures are encoded into
neural populations where each neuron exhibits tuning to a specific posture [2].
Similarly distributed representations, and correlates of decisional processes have
also been reported in many other sensorimotor brain areas [6,10,13]. Together,
these findings strengthen our approach by grounding it on a strong biological
basis.

Behavioral studies on imitation report greater interferences during tasks
where the spatial transformation is irrelevant, as compared to tasks where ana-
tomical imitation has to be avoided [4, 5, 8]. Our model supports this obser-
vation, but explains it in terms of the longer processing time required by the
anatomical imitative strategy, which needs to process an additional variable.
Usual accounts for the greater influence of the spatial transformation consider
primarily a stronger linkage with the decisional process [4,5,9,14]. Although both
hypotheses are compatible, one may be interested in determining their respective
influence, which would need more investigations.

Our modeling study also showed that combining of transformations produces
interferences. One may wonder why the nervous system would use a combination
of two strategies for solving imitation tasks since they produce interferences. Our
simulations show that, in specific conditions, their interaction result in positive
effects. For instance, when the imitator and the demonstrator are face to face,
mirror imitation is faster, whereas anatomical imitation is more effective when
the imitator looks at the back of the demonstrator. From this, we can propose
an alternative hypothesis explaining that, in unconstrained conditions and when
people are facing each other, mirror imitation is the most usual strategy for
copying meaningless gestures [3]. Rather than assuming that mirror imitation
has a stronger influence on the selection process [4,8,9], we suggest that this
strategy is the one which exhibits the maximal congruency between the con-



current transformations. Additional neurophysiological evidence supporting our
hypotheses can be found in an fMRI study showing that some of the brain ar-
eas activated during the imitation of finger movements are more active during
specular than during anatomical imitation [9]. In this experiment, the authors
did not consider the hypothesis that an anatomical mapping could exist between
contralateral hands. The mirror condition which they showed to produce higher
brain activation, corresponds in our approach to a condition where the responses
of the parallel strategies are perfectly congruent. Since this case is effectively the
one in which our model produces responses with the highest energy, the nervous
system may hence be naturally biased toward this strategy.
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