403 research outputs found
Highly efficient multilayer organic pure-blue-light emitting diodes with substituted carbazoles compounds in the emitting layer
Bright blue organic light-emitting diodes (OLEDs) based on
1,4,5,8,N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole
(N,N'-diethyl-3,3'-bicarbazyl) (DEC) as emitting layers or as dopants in a
4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) matrix are described. Pure
blue-light with the C.I.E. coordinates x = 0.153 y = 0.100, electroluminescence
efficiency \eta_{EL} of 0.4 cd/A, external quantum efficiency \eta_{ext.} of
0.6% and luminance L of 236 cd/m2 (at 60 mA/cm2) were obtained with PMC as an
emitter and the 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline (BCP) as a
hole-blocking material in five-layer emitting devices. The highest efficiencies
\eta_{EL.} of 4.7 cd/A, and \eta_{ext} = 3.3% were obtained with a four-layer
structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158,
y=0.169, \lambda_{peak} = 456 nm). The \eta_{ext.} value is one the highest
reported at this wavelength for blue OLEDs and is related to an internal
quantum efficiency up to 20%
Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish (Danio rerio)
With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and β-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds
Probiotic Pediococcus acidilactici modulates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus).
The application of probiotics in aquaculture has received concerted research efforts but the localised intestinal immunological response of fish to probiotic bacteria is poorly understood. Therefore, a study was conducted to evaluate the probiotic effect of Pediococcus acidilactici on Nile tilapia (Oreochromis niloticus) with specific emphasis on intestinal health and probiotic levels as well as system level responses such as growth performance, feed utilization and haemato-immunological parameters under non-challenged conditions. Fish (9.19 ± 0.04 g) were fed either a control diet or a P. acidilactici supplemented diet (at 2.81 × 10(6) CFU g(-)(1)) for six weeks. At the end of the study the probiotic was observed to populate the intestine, accounting for ca. 3% (1.59 × 10(5) CFU g(-)(1)) of the cultivable intestinal bacterial load. Real-time PCR indicated that the probiotic treatment may potentiate the immune-responsiveness of the intestine as up-regulation of the gene expression of the pro-inflammatory cytokine TNFα was observed in the probiotic fed fish (P 0.05)
Doped and non-doped organic light-emitting diodes based on a yellow carbazole emitter into a blue-emitting matrix
A new carbazole derivative with a 3,3'-bicarbazyl core 6,6'-substituted by dicyanovinylene groups (6,6'-bis(1-(2,2'-dicyano)vinyl)-N,N'-dioctyl-3,3'-bicarbazyl; named (OcCz2CN)2, was synthesized by carbonyl-methylene Knovenagel condensation, characterized and used as a component of multilayer organic light-emitting diodes (OLEDs). Due to its -donor-acceptor type structure, (OcCz2CN)2 was found to emit a yellow light at max=590 nm (with the CIE coordinates x=0.51; y = 0.47) and was used either as a dopant or as an ultra-thin layer in a blue-emitting matrix of 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi). DPVBi (OcCz2CN)2-doped structure exhibited, at doping ratio of 1.5 weight %, a yellowish-green light with the CIE coordinates (x = 0.31; y = 0.51), an electroluminescence efficiency EL=1.3 cd/A, an external quantum efficiency ext= 0.4 % and a luminance L= 127 cd/m2 (at 10 mA/cm2) whereas for non-doped devices utilizing the carbazolic fluorophore as a thin neat layer, a warm white with CIE coordinates (x = 0.40; y= 0.43), EL= 2.0 cd/A, ext= 0.7 %, L = 197 cd/m2 (at 10 mA/cm2) and a color rendering index (CRI) of 74, were obtained. Electroluminescence performances of both the doped and non-doped devices were compared with those obtained with 5,6,11,12-tetraphenylnaphtacene (rubrene) taken as a reference of highly efficient yellow emitter
A novel dietary multi-strain yeast fraction modulates intestinal toll-like-receptor signalling and mucosal responses of rainbow trout (Oncorhynchus mykiss)
This study was conducted to evaluate the mucosal immune responses of rainbow trout when supplementing an experimental formulated feed with multi-strain yeast fraction product (Saccharomyces cerevisiae and Cyberlindnera jardinii). In total, 360 fish (initial BW 23.1 ± 0.2 g) were randomly allotted into three dietary treatments in an 8-week feeding trial. The dietary treatments included basal diet (control) and control + 1.5 g/kg multi-strain yeast fraction product (MsYF) fed continuously and pulsed every two weeks between control and MsYF diet. No negative effects on growth performance of feeding the MsYF supplemented diet were observed. SGR and FCR averaged 2.30 ± 0.03%/day and 1.03 ± 0.03, respectively, across experimental groups. Muscularis thickness in the anterior intestine after 8 weeks of feeding was significantly elevated by 44.3% in fish fed the MsYF continuously, and by 14.4% in fish fed the MsYF pulsed (P 50% increase) intestine were observed after 8 weeks of feeding the MsYF supplemented diet (P10% reduction). The gene expression analysis of the intestine revealed significant elevations in expression of tlr2, il1r1, irak4, and tollip2 after 4 weeks of feeding the MsYF. Significant elevations in effector cytokines tnfα, il10 and tgfβ were observed after 4 weeks of feeding the MsYF regime. After 8 weeks significant elevations in the gene expression levels of il1β, ifnγ, and il12 were observed in fish fed the MsYF. Likewise, the expression of the transcription factor gata3 was significantly elevated (P<0.01). Supplementation of the multi-strain yeast fraction product positively modulates the intestinal mucosal response of rainbow trout through interaction with toll-like receptor two signalling pathway and potential for increased capacity of delivery of antigens to the underlying mucosal associated lymphoid tissue
Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750)
The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium’s spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic. © 2019 National Academy of Sciences. All rights reserved
The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths
We present the Planck Sky Model (PSM), a parametric model for the generation
of all-sky, few arcminute resolution maps of sky emission at submillimetre to
centimetre wavelengths, in both intensity and polarisation. Several options are
implemented to model the cosmic microwave background, Galactic diffuse emission
(synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II
regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic
Sunyaev-Zeldovich signals from clusters of galaxies. Each component is
simulated by means of educated interpolations/extrapolations of data sets
available at the time of the launch of the Planck mission, complemented by
state-of-the-art models of the emission. Distinctive features of the
simulations are: spatially varying spectral properties of synchrotron and dust;
different spectral parameters for each point source; modeling of the clustering
properties of extragalactic sources and of the power spectrum of fluctuations
in the cosmic infrared background. The PSM enables the production of random
realizations of the sky emission, constrained to match observational data
within their uncertainties, and is implemented in a software package that is
regularly updated with incoming information from observations. The model is
expected to serve as a useful tool for optimizing planned microwave and
sub-millimetre surveys and to test data processing and analysis pipelines. It
is, in particular, used for the development and validation of data analysis
pipelines within the planck collaboration. A version of the software that can
be used for simulating the observations for a variety of experiments is made
available on a dedicated website.Comment: 35 pages, 31 figure
Methodology of the Virtual Reconstruction of Arquitectonic Heritage: Ambassador Vich's Palace in Valencia
The 19th century was disastrous as far as the conservation of architectonic heritage is concerned. The awareness of the importance of preserving monuments that has prevailed since the end of the last century was dazzlingly absent in the previous, leading both to the disappearance of representative heritage works and the plundering of many others. The present study establishes the methodological basis to proceed with the virtual reconstruction of many disappeared architectures, representative of emblematic architectonic typologies. A method based on the combination of deduction and induction allows benchmarks to be created that signify a starting point to which the key and specific elements of each building are later incorporated, from the data extracted from the conserved parts and the graphic, literary and archive documents. The result is the virtual recovery of the general outlines of the architecture: morphology of the plot, volumetry, exterior and interior facades, and the functional layout. The good results obtained in the study of the disappeared Ambassador Vich's Palace, allow the methodology to be extended to the analysis of other similar examples, serving investigators as a tool to carry out an arduous task of deciphering a trail that is increasingly fading with the passing of time.Galiana Agullo, M.; Mas Tomas, MDLA.; Lerma Elvira, C.; Peñalver Martínez, MJ.; Conesa Tejada, S. (2014). Methodology of the Virtual Reconstruction of Arquitectonic Heritage: Ambassador Vich's Palace in Valencia. International Journal of Architectural Heritage. 8(1):94-123. doi:10.1080/15583058.2012.672623S9412381Boix, V. 1979.Historical and topographic Valencia[in Spanish]. Vol. I261 S. A. Printing J. Rius.Estaban Chapapría, J. (2001). Impostación del patio del Embajador Vich en el ex-convento del Carmen (Valencia). Loggia, Arquitectura & Restauración, (12), 26. doi:10.4995/loggia.2001.3605Morrish, S. W., & Laefer, D. F. (2010). Web-Enabling of Architectural Heritage Inventories. International Journal of Architectural Heritage, 4(1), 16-37. doi:10.1080/15583050902731056Lotz, W. 1995.Architecture in Italy 1500–1600 [in Italian]35–37. ed. RizzoliYale University Press.Lourenço, P. B., Peña, F., & Amado, M. (2010). A Document Management System for the Conservation of Cultural Heritage Buildings. International Journal of Architectural Heritage, 5(1), 101-121. doi:10.1080/15583050903318382Vila Ferrer, S. (2001). La recuperación del patio del palacio del Embajador Vich (Valencia). Loggia, Arquitectura & Restauración, (12), 44. doi:10.4995/loggia.2001.3606Zonta, D., Pozzi, M., & Zanon, P. (2008). Managing the Historical Heritage Using Distributed Technologies. International Journal of Architectural Heritage, 2(3), 200-225. doi:10.1080/1558305080206369
Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways
It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers
- …