144 research outputs found

    Effect of X-Rays on the Mechanical Properties of Aluminized FEP Teflon(trademark)

    Get PDF
    Pieces of the multilayer insulation (MLI) that is integral to the thermal control of the Hubble Space Telescope (HST) have been returned by two servicing missions after 3.6 and 6.8 years in orbit. They reveal that the outer layer, which is made from 5 mil (0.13 mm) thick aluminized fluorinated ethylenepropylene (FEP) Teflon. has become severely embrittled. Although possible agents of this embrittlement include electromagnetic radiation across the entire solar spectrum, trapped particle radiation, atomic oxygen, and thermal cycling, intensive investigations have not yielded unambiguous causes. Previous studies utilizing monoenergetic photons in the 69-1900 eV range did not cause significant embrittlement, even at much higher doses than were experienced by the HST MLI. Neither did x-rays in the 3 to 10 keV range generated in a modified electron bean evaporator. An antidotal aluminized FEP sample that was exposed to an intensive dose from unfiltered Mo x-ray radiation from a rotating anode generator, however, did show the requisite embrittlement. Thus, a study was undertaken to determine the effects of x-ray exposure on the embrittlement of aluminized FEP in hopes that it might elucidate the HST MLI degradation mechanism. Tensile specimens of aluminized 5 mil thick FEP were exposed to a constant fluence of unfiltered x-ray radiation from a Mo target whose maximum energy ranged from 20-60 kV. Other samples were annealed, thermally cycled (100x) between 77-333 K, or cycled and irradiated. Tensile tests and density measurements were then performed on the samples. Only the samples which had been irradiated had the drastically reduced elongation-to-break, characteristic of the HST samples. Thermal cycling may accelerate the embrittlement, but the effect was near the scatter in the measurements. Annealing and thermal cycling had no apparent effect. Only the samples which had been irradiated and annealed showed significant density increases, likely implicating polymer chain scission and annealing

    Information Discovery on Electronic Health Records Using Authority Flow Techniques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the use of electronic health records (EHRs) becomes more widespread, so does the need to search and provide effective information discovery within them. Querying by keyword has emerged as one of the most effective paradigms for searching. Most work in this area is based on traditional Information Retrieval (IR) techniques, where each document is compared individually against the query. We compare the effectiveness of two fundamentally different techniques for keyword search of EHRs.</p> <p>Methods</p> <p>We built two ranking systems. The traditional BM25 system exploits the EHRs' content without regard to association among entities within. The Clinical ObjectRank (CO) system exploits the entities' associations in EHRs using an authority-flow algorithm to discover the most relevant entities. BM25 and CO were deployed on an EHR dataset of the cardiovascular division of Miami Children's Hospital. Using sequences of keywords as queries, sensitivity and specificity were measured by two physicians for a set of 11 queries related to congenital cardiac disease.</p> <p>Results</p> <p>Our pilot evaluation showed that CO outperforms BM25 in terms of sensitivity (65% vs. 38%) by 71% on average, while maintaining the specificity (64% vs. 61%). The evaluation was done by two physicians.</p> <p>Conclusions</p> <p>Authority-flow techniques can greatly improve the detection of relevant information in EHRs and hence deserve further study.</p

    Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle

    Get PDF
    The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD)

    Finding the “Dark Matter” in Human and Yeast Protein Network Prediction and Modelling

    Get PDF
    Accurate modelling of biological systems requires a deeper and more complete knowledge about the molecular components and their functional associations than we currently have. Traditionally, new knowledge on protein associations generated by experiments has played a central role in systems modelling, in contrast to generally less trusted bio-computational predictions. However, we will not achieve realistic modelling of complex molecular systems if the current experimental designs lead to biased screenings of real protein networks and leave large, functionally important areas poorly characterised. To assess the likelihood of this, we have built comprehensive network models of the yeast and human proteomes by using a meta-statistical integration of diverse computationally predicted protein association datasets. We have compared these predicted networks against combined experimental datasets from seven biological resources at different level of statistical significance. These eukaryotic predicted networks resemble all the topological and noise features of the experimentally inferred networks in both species, and we also show that this observation is not due to random behaviour. In addition, the topology of the predicted networks contains information on true protein associations, beyond the constitutive first order binary predictions. We also observe that most of the reliable predicted protein associations are experimentally uncharacterised in our models, constituting the hidden or “dark matter” of networks by analogy to astronomical systems. Some of this dark matter shows enrichment of particular functions and contains key functional elements of protein networks, such as hubs associated with important functional areas like the regulation of Ras protein signal transduction in human cells. Thus, characterising this large and functionally important dark matter, elusive to established experimental designs, may be crucial for modelling biological systems. In any case, these predictions provide a valuable guide to these experimentally elusive regions

    Association of the Type 2 Diabetes Mellitus Susceptibility Gene, TCF7L2, with Schizophrenia in an Arab-Israeli Family Sample

    Get PDF
    Many reports in different populations have demonstrated linkage of the 10q24–q26 region to schizophrenia, thus encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported linkage of the 10q24–q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57 Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2 gene intronic SNP, rs12573128, (p = 7.01×10−6) and of the nearby intergenic SNP, rs1033772, (p = 6.59×10−6) which is positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D) among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of inheritance while performing association analyses in regions of interest. Further validation studies in additional populations are required

    Comparative genomics reveals functional transcriptional control sequences in the Prop1 gene

    Get PDF
    Mutations in PROP1 are a common genetic cause of multiple pituitary hormone deficiency (MPHD). We used a comparative genomics approach to predict the transcriptional regulatory domains of Prop1 and tested them in cell culture and mice. A BAC transgene containing Prop1 completely rescues the Prop1 mutant phenotype, demonstrating that the regulatory elements necessary for proper PROP1 transcription are contained within the BAC. We generated DNA sequences from the PROP1 genes in lemur, pig, and five different primate species. Comparison of these with available human and mouse PROP1 sequences identified three putative regulatory sequences that are highly conserved. These are located in the PROP1 promoter proximal region, within the first intron of PROP1, and downstream of PROP1. Each of the conserved elements elicited orientation-specific enhancer activity in the context of the Drosophila alcohol dehydrogenase minimal promoter in both heterologous and pituitary-derived cells lines. The intronic element is sufficient to confer dorsal expansion of the pituitary expression domain of a transgene, suggesting that this element is important for the normal spatial expression of endogenous Prop1 during pituitary development. This study illustrates the usefulness of a comparative genomics approach in the identification of regulatory elements that may be the site of mutations responsible for some cases of MPHD
    corecore