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Abstract

Background: The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the
neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The
interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in
shaping the pituitary precursor, Rathke's pouch, are well described. However, less is known about the role of head
mesenchyme in pituitary organogenesis. The head mesenchyme is derived from definitive mesoderm and neural
crest, but the relative contributions of these tissues to the mesenchyme adjacent to the pituitary are not known.

Results: We carried out lineage tracing experiments using two neural crest-specific mouse cre lines, Wnti-cre and
PO-cre, and determined that the head mesenchyme rostral to the pituitary gland is neural crest derived. To assess
the role of the neural crest in pituitary development we ablated it, using Wnti-cre to delete Ctnnb1 (B-catenin),
which is required for neural crest development. The Wntl-cre is active in the neural ectoderm, principally in the
mesencephalon, but also in the posterior diencephalon. Loss of B-catenin in this domain causes a rostral shift in the
ventral diencephalon, including the pituitary organizer, resulting in pituitary dysmorphology. The neural crest
deficient embryos have abnormally dilated pituitary vasculature due to a loss of neural crest derived pericytes.

Conclusions: 3-catenin in the Wnti expression domain, including the neural crest, plays a critical role in regulation
of pituitary gland growth, development, and vascularization.
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Background

In comparison to invertebrate chordates, vertebrates are
characterized by an elaborate head with an expanded
brain, elaborate sensory organs, and a craniofacial skel-
eton. These modifications from the ancestral chordate
where enabled in part by the appearance of neural crest
cells, neurogenic placodes, and muscularized hypomeres,
which are derived from definitive mesoderm, in the an-
cestral vertebrate [1, 2]. These three tissues, along with
the neural ectoderm, interact in diverse ways to form the
elaborate head structures of vertebrates, including sensory
organs and craniofacial skeletal components [3, 4]. The
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pituitary gland also appears with the formation of verte-
brates and is partially derived from the adenohypophyseal
placode [5]. The contributions of the adenohypophyseal
placode to pituitary development are well described
[5, 6]; however, much less is known about neural
crest and definitive mesoderm contributions to pituit-
ary organogenesis.

Rathke’s pouch, the precursor to the pituitary anterior
and intermediate lobes, is surrounded by cranial head
mesenchyme and is in close proximity to the rostral end
of the notochord and pre-chordal plate, which have im-
portant signaling functions in early head development
[7]. Chick explant studies demonstrated that co-cultures
of the ventral diencephalon and Rathke’s pouch could
only induce differentiation of corticotropes when mesen-
chyme was included in the culture [8]. Additionally,
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explants of chick notochord can cause surface ectoderm to
invaginate, forming a structure similar to Rathke’s pouch
[8]. These experiments suggest that chick head mesen-
chyme plays a role in supporting cell differentiation in the
anterior lobe. The permissive mesenchymal signal for anter-
ior lobe cell specification has not been identified. Several se-
creted factors expressed in mouse pituitary adjacent
mesenchyme, including Chordin, Noggin, Nbl1, and Fstll,
are candidates for a mesenchymal signal in pituitary or-
ganogenesis [9-11]. Foxd1 is a forkhead domain transcrip-
tion factor expressed in the pituitary adjacent mesenchyme,
and Foxdl™~ mice have increased proliferation of anterior
lobe cells and decreased LH[3 expression. These results sug-
gest that Foxd1 may regulate the expression of a mesenchy-
mal signal necessary for pituitary development [12].

The cranial mesenchyme contributes to the hypophys-
eal portal system, which is a network of blood vessels
that surrounds and invades the pituitary gland, enabling
delivery of releasing hormones from the hypothalamus
to the pituitary anterior lobe and from the pituitary
gland to target organs in the body. The head mesen-
chyme is comprised of both definitive mesoderm, mi-
grating through the primitive streak, and neural crest,
which migrates away from the dorsal side of the neural
tube and throughout the body [4]. The neural crest
forms much of the peripheral nervous system, which is
consistent with its ectodermal origin, but within the
head it contributes to tissues, such as bones, muscles,
and dermis of the skin, which are usually derived from
definitive mesoderm [13]. In recognition of the diversity
of tissues generated by the neural crest, it is frequently
described as a fourth germ layer [14]. The developmental
plasticity of the neural crest results from the maintenance
of a gene regulatory network, characteristic of pluripotent
blastula cells, in the neural crest lineage [15]. The cranial
vasculature reflects the dual contributions of definitive
mesoderm and neural crest; endothelial cells are derived
from definitive mesoderm and the neural crest forms the
pericytes and smooth muscle that wrap around and regu-
late the endothelial cells [16—18]. To define the contribu-
tions of head mesenchyme to pituitary organogenesis, we
utilized a genetic model to examine neural crest contribu-
tions to pituitary gland organogenesis. B-CATENIN is a
key component of canonical Wnt signaling, and loss of j3-
catenin in the neural crest lineage is known to cause apop-
tosis of migrating neural crest cells, leading to severe head
malformations [19]. We present here an analysis of pituit-
ary gland organogenesis in the absence of neural crest,
and uncovered a critical role for neural crest contributions
to the pituitary vasculature.

Results
Tg(Wntl-cre)l1Rth (abbreviated here as Wntl-cre) and
C57BL/6 J-Tg(P0-Cre)94Imeg (PO-cre) are frequently used
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to fate map and generate tissue specific loss-of-function
alleles in the neural crest [20, 21]. To determine the con-
tributions of the neural crest to head mesenchyme near
the developing pituitary gland we crossed both the WntI-
cre and PO-cre lines with the reporter lines B6.Gt(RO-
SA)2650rtm4(ACTB»thomato,»EGFP)Luo (ROSﬂMT/MG) and Gt
(ROSA)26S0r"™15h (Rosa***PL*Z) to determine neural crest
contributions to the pituitary adjacent head mesenchyme
[22, 23]. At embryonic day of development 8.5 (e8.5) both
Whntl-cre and PO-cre mediate recombination in the mi-
grating neural crest cells (Fig. 1a and b). The WntI-cre
also mediates recombination in the midbrain, a domain of
cre activity that is not observed in the PO-cre. The mid-
brain activity of WntI-cre is also observed at e12.5, but it
is not confined to the midbrain, as LacZ is expressed in
the posterior diencephalon and in the anterior hindbrain
(Fig. 1c). At el2.5 the head mesenchyme rostral to
Rathke’s pouch expresses LacZ, indicating that it is de-
rived from the neural crest (Fig. 1d and e). The head mes-
enchyme caudal to Rathke’s pouch is devoid of X-gal
staining, suggesting that this tissue is derived from defini-
tive mesoderm [7, 24, 25]. A sharp boundary between the
neural crest derived head mesenchyme and the definitive
mesenchyme is observed ventral to Rathke’s pouch in
midsagittal sections (Fig. 1d). Rathke’s pouch is located at
the rostral end of the notochord, and chick explants stud-
ies demonstrate that the notochord may be involved in
Rathke’s pouch formation [8, 26, 27]. At more lateral sec-
tions the boundary between neural crest and definitive
mesoderm is not as sharp, as the definitive mesoderm ex-
tends past the lateral edge of Rathke’s pouch (Fig. 1e). At
el4.5 X-gal stained cells are detected in the forming pituit-
ary anterior lobe of Wntl-cre; Rosa*®”*““* embryos, sug-
gesting that the neural crest derived mesenchyme is
invading the oral ectoderm-derived Rathke’s pouch tissue
(Fig. 1f). By e18.5 Wntl-cre expressing cells have made a
significant contribution to the pituitary gland (Fig. 1g).
Lineage tracing in PO-cre; Rosa*°”*“““ embryos at el2.5
also demonstrates a sharp boundary between neural crest
and definitive mesoderm at mid-sagittal locations (Fig. 1h).
Although Wntl-cre activity in the midbrain and neural
crest and PO-cre activity in the neural crest mimic en-
dogenous Wntl and PO expression, we also observed ec-
topic activity in the ventral diencephalon for both cre lines
(Fig. 1d and h), and cre activity in Rathke’s pouch for the
PO-cre (Fig. 1h).

Previous work established that WntI-cre mediated de-
letion of f5-catenin causes neural crest cells to undergo
apoptosis during migration, which provides a method to
generate neural crest deficient embryos [19]. Because pi-
tuitary development was not analyzed in these embryos,
we crossed Wntl-cre with B6.129-Ctnnb 175" /Knw]
(referred to here as f-cat™™) and then generated Wntl-
cre;B-cat™ embryos to determine if the neural crest
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Fig. 1 a-b Rosa reporter mice enable fluorescent detection of cre recombinase activity, where green fluorescence indicates areas of cre
recombination and red fluorescence indicates areas with no recombination. a Wnt1-cre; Rosa™” ™ e8.5 embryo. Arrow indicates recombinase
activity in the midbrain. b PO-cre; Rosa™"™° e8.5 embryo. c-h X-gal staining (blue) reveals cre recombinase activity in Rosa”"*%“ reporter mice.
cf and h sagittal sections counterstained with neutral red. ¢ Mid-sagittal section of an e12.5 Wnt1-cre; Rosa**"*““embryo. Dotted lines indicate
the midbrain (M) boundaries with the diencephalon and hindbrain. The boxed area is magnified in d. d Boxed area indicated in ¢. Arrow indicates
Rathke’s pouch; R indicates rostral head mesenchyme; C indicates caudal head mesenchyme e e12.5 Wnt1-cre; Rosa*' "% section at the lateral
extreme of Rathke’s pouch (arrow). f €14.5 Wnt1-cre; Rosa™™"*““. Arrow indicates X-gal stained cells within the pituitary anterior lobe. g Ventral
view of a dissected e18.5 Wnt1-cre; Rosa™%*%“ pituitary. h Mid-sagittal section of an e12.5 PO-cre; Rosa* " embryo. Scale bars in a, b, and d-h

equal 100 um. Scale bar in ¢ equals 1 mm
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derived head mesenchyme is important for pituitary or-
ganogenesis. Indeed, WatlI-cre;-cat™ embryos do have
abnormalities in pituitary development (Fig. 2a-i). At
early stages of Rathke’s pouch formation (e10.5) a larger
domain of oral ectoderm is recruited into Rathke’s
pouch, as marked by immunostaining for the critical
LIM homeodomain transcription factor, LHX3 (Fig. 2b
and c). At e12.5 the enlarged, mutant Rathke’s pouch in-
cludes more oral ectoderm tissue than typical, extending
more rostrally than normal (Fig. 1e). The enlarged do-
main of presumptive pituitary tissue becomes highly dys-
morphic (Fig. 2f). The abnormal pituitary extends
through the cartilage plate that underlies the pituitary
gland at e18.5 and can form an anterior lobe like struc-
ture that projects into the oral cavity at more rostral lo-
cations (Fig. 2h and i).

The number and distribution of hormone expressing
cell types in the pituitary anterior lobe in both wild type
and Watlcre; f-cat™ embryos was examined by immu-
nostaining for pituitary hormones at e18.5 (Fig. 3a-h).
No obvious difference in the quantity or distribution of
anterior lobe cell types was detected between the wild
type and mutant embryos, despite the highly dys-
morphic, mutant pituitary gland.

The dysmorphic pituitary of Wntlcre; f-cat™ em-
bryos resembles those of other genetically modified
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mouse embryos that have an expansion of the pituitary
organizer in the ventral diencephalon [6]. The pituitary
organizer is characterized in part by the expression of
Fgf10 and Bmp4, which are necessary for the induction
and proliferation of Rathke’s pouch [28, 29]. We exam-
ined Bmp4 and Fgfl0 expression in wild type and
Wntlcre; B-cat™® embryos by in situ hybridization and
found that the mutant embryos have expanded expres-
sion domains of both morphogenetic proteins (Fig. 4a —
d). The expression domain of the transcription factor
SIX6 typically exists in the ventral diencephalon rostral
to the pituitary organizer. Six6 expression is shifted ros-
trally from Rathke’s pouch in the mutant embryos
(Fig. 4e — f). These results demonstrate that the pattern-
ing within the ventral diencephalon is disrupted in
Wntlcre; S-cat™ embryos. Excess BMP and FGF sig-
naling from the pituitary organizer likely contributes to
the recruitment of additional oral ectoderm into
Rathke’s pouch [9, 30-32].

Whntl-cre is expected to drive recombination in mul-
tiple tissues where loss of S-catenin could affect pituitary
organogenesis, including the neural crest and ventral di-
encephalon. We examined B-CATENIN expression by
immunohistochemistry to determine the efficiency of cre
recombination in these tissues (Fig. 5a-f). At e12.5 the
Wntl-cre; f-cat™ embryos do not express f-CATENIN

Wild type

R 1 L S P

bars equal 100 um

Wntl-cre; B-cat’”*

B-cat™™ e105 embryos d Wild type e12.5 e & f Two separate Wntl-cre; B-ca
coronal sections g Wild type h & i Two sections from the same Wnt1-cre; B-cat

Wntl-cre; B-cat™"

Fig. 2 a - f LHX3 immunostaining (green) on sagittal sections, counterstained with DAPI (blue). a Wild type e10.5 b & ¢ Two separate Wnt1-cre;

% €125 embryos g — i Hemotoxylin and eosin staining on e18.5

% embryo, with | representing a more rostral location. All scale
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Wild Type

POMC

Fig. 3 Immunostaining for pituitary anterior and intermediate lobe hormones (brown) at e17.5, counterstained with methyl green (blue). a & b
Proopiomelanocortin (POMC) ¢ & d Growth hormone (GH) e & f Thyroid stimulating hormone (TSH) g & h Luteinizing hormone (LH), arrows
indicate select positive cells. a, ¢, e, & g Wild type b, d, f, & h Wnti1-cre; ,B—caer/fX. Scale bar in H equals 100 pm for all images

Whntl-cre; B-cat™”
B 47

in the residual neural crest derived mesenchyme rostral
to Rathke’s pouch, indicating that Wntl-cre efficiently
recombines the conditional S-catenin allele in this tissue
(Fig. 5d and e). Wntl-cre is not uniformly active within
the ventral diencephalon, and only small clumps of cells
exhibit loss of B-CATENIN (Fig. 5d and f). This level of
[-catenin ablation is unlikely to alter ventral dienceph-
alon patterning. However, we may be underestimating
the degree of B-catenin ablation as the protein persists
in the adherens junctions for many hours following re-
combination at the S-catenin locus [33]. In addition, the
presence of B-CATENIN protein in the adherens junc-
tions does not maintain canonical Wnt signaling after

cre mediated recombination [33]. Therefore, we cannot
rule out the possibility that 5-catenin ablation in the in-
fundibular domain may result in an expansion of the pi-
tuitary organizer.

We sought to recapitulate the Wautl-cre; p-cat™™
phenotype using the PO-cre, which is also active in the
neural crest and has some ectopic activity in the ventral
diencephalon, to confirm that loss of S-catenin in these
domains causes the pituitary phenotype. PO-cre; S-cat™™
embryos have severe craniofacial malformations com-
pared to wild type littermates consistent with a neural
crest deficiency (Additional file 1: Figure S1), and similar
in phenotype to Wntl-cre; S-cat™” embryos [19].
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Fig. 4 RNA in situ hybridization on e10.5 sagittal sections (brown). Arrows represent the boundary of expression between the domain of Bmp4
and Fgf10 expression and adjacent Six6 expressing domain in the ventral diencephalon. a & b Fgf10 ¢ & d Bmp4 e & f Six6 a, ¢, & e Wild type b,

d, & f Wntl-cre; B-cat™™. Scale bar in F equals 100 pm for all images
J

Wild Type

F

Wnt1-cre; B-cat™’*

Fig. 5 Immunostaining for B-CATENIN (green) on e14.5 sagittal sections, counterstained with DAPI (blue) a—c Wild type, boxed regions in a are
magnified in b and ¢. b Region highlighting neural crest derived mesenchyme ¢ Region highlighting ventral diencephalon d-f Wnt1-cre; B-cat™
% boxed regions in d are magnified in e and f. e Region highlighting neural crest derived mesenchyme where B-CATENIN is lost f Region
highlighting ventral diencephalon where b-catenin is maintained. Arrow indicates a small region with no 3-CATENIN expression. Scale bars in a

and d equal 100 um, scale bars in b, d, e, and f equal 20 um
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However, unlike WautI-cre; f-cat™™ embryos, the pituit-
ary morphology of PO-cre; S-cat™ mutant embryos is
very similar to wild type despite the absence of neural
crest derived cranial mesenchyme rostral to Rathke’s
pouch, as evidenced by the absence of the cartilage plate
rostral to the pituitary gland (Fig. 6a and b). Using im-
munostaining we determined that the PO-cre efficiently
recombines the conditional 3-catenin allele in the neural
crest, but not in the ventral diencephalon at el2.5
(Fig. 6g—i). Within Rathke’s pouch, variable, small
patches of B-CATENIN deficient cells are observed, but
B-CATENIN is not completely eliminated (Fig. 6j). Thus,
both Wntl-cre and PO-cre are similarly effective in delet-
ing -catenin in the neural crest, but the P0-cre does not
delete f5-catenin in the ventral diencephalon. Therefore,
the Watl-cre; B-cat™ dysmorphic pituitary is not
caused by the loss of neural crest cells.

The PO-cre can drive recombination in Rathke’s pouch,
and B-CATENIN can influence the activity of the tran-
scription factors PROP1, PIT1 (POUI1F1), PITX2, and
SF1 (NR5A1) in the pouch and its derivatives [34—37].
Therefore, we sought to determine if the ectopic, mosaic
loss of B-CATENIN in the PO-cre; f-ca?™ pouch could
alter anterior lobe cell specification. No significant
changes in hormone expressing cell types were observed
in the mutant embryos (Fig. 7a — h), indicating that the
mosaic loss of B-CATENIN in Rathke’s pouch does not
disrupt pituitary cell specification.

Wnt signaling in the ventral diencephalon is known to
regulate the expression domain of the pituitary organizer
[30, 31]. While the mosaic loss of S-catenin in the ven-
tral diencephalon observed with Wntl-cre is unlikely to
alter pituitary organizer activity, we sought to inactivate
B-catenin in the ventral diencephalon to determine if ca-
nonical Wnt signaling mediates pituitary organizer ex-
pression. We crossed ShitmIECEP/ere)Cit - (gph_cre) with
Rosa**P**““ and stained embryo sections with X-gal. We
detected staining in the ventral diencephalon and the
oral ectoderm at e€10.5 in a pattern that recapitulates the
endogenous expression of Skh (Additional file 2: Figure
S2a) [38]. We next crossed the Shh-cre with ﬁ-catfx/ﬁc to
determine if the loss of fS-catenin in the ventral di-
encephalon would lead to an expanded pituitary organ-
izer and an expansion of Rathke’s pouch. At el12.5 the
pituitaries of Shh-cre; p-cat™ embryos were indistin-
guishable from wild type littermates (Additional file 2:
Figure S2b—c). The lack of S-catenin in the Shh express-
ing domain of the fore and hind limbs leads to disrup-
tions in digit formation, as expected (Additional file 2:
Figure S2d-f). Previous studies have demonstrated
that S-catenin is necessary for maintaining limb mesen-
chyme and Fgf10 expression in the apical ectodermal ridge
[39]. We used immunostaining to determine whether the
Shh-cre effectively deleted B-CATENIN in the ventral
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diencephalon. Although there were patches of cells that
were negative for B-CATENIN immunostaining, the ma-
jority of cells in the ventral diencephalon retained [-
CATENIN expression (Additional file 2: Figure S2g—i).
We concluded that unlike in the limb bud, the Shh-cre is
unable to efficiently recombine the S-cat™” allele in the
ventral diencephalon, leaving canonical Wnt signaling
largely intact. This result also confirms that the mosaic
loss of B-catenin in the ventral diencephalon is insufficient
for producing the dysmorphic pituitaries of Wntl-cre;
B-cat™ embryos.

There are many precedents for variability in cre-medi-
ated deletion, including parent-of-origin effects, episome
formation, number of conditional alleles, and genetic
background differences, any of which could affect the
activity of the transgenic cre lines used in this study
[40-43]. However, the three cre lines used here demon-
strate that S-catenin deletion in the neural crest and mo-
saic B-catenin deletion in the ventral diencephalon do
not generate a dysmorphic pituitary gland. The major
difference in activity between the cre lines is the expres-
sion of Wntl-cre in the midbrain.

We tested the possibility that loss of S-catenin in the
midbrain results in patterning disruptions of the ventral
diencephalon by examining additional markers of the
posterior ventral diencephalon. Our fate mapping stud-
ies suggest that the WntlI-cre is also active in the poster-
ior diencephalon (Fig. 1c). Immunoflourescence for -
CATENIN on ell.5 wild type and Wntl-cre; S-catenin™
/ embryos demonstrates that f-CATENIN expression is
lost in many cells near the boundary of the midbrain
and posterior diencephalon (Fig. 8a-d). Otx2 is
expressed in the forebrain and midbrain and is necessary
for forming the isthmic organizer at the midbrain/hind-
brain boundary [44—-46]. During Rathke’s pouch induc-
tion, OTX2 is expressed in the infundibulum and more
posterior regions of the ventral diencephalon, but is ex-
cluded from the neural ectoderm rostral to the infun-
dibulum [47]. At ell.5 OTX2 is strongly expressed in
the posterior diencephalon, but has a lower level of ex-
pression in the infundibulum (Fig. 1e and f). In Wntl-
cre; B-cat™™ embryos OTX2 is strongly expressed in the
infundibulum and a domain of weaker OTX2 expression
is observed rostral to the infundibulum (Fig. 8g and h).
Lefl is expressed in the premamillary region of the de-
veloping hypothalamus [48]. This domain of LEF1 ex-
pression is not contiguous with the infundibulum
(Fig. 8i and j). In Wntl-cre; B-cat™™ embryos the
boundary of LEF1 expression is displaced rostrally and
corresponds to the caudal edge of the infundibulum
(Fig. 8k and 1). These results demonstrate that the pat-
terning of the entire posterior ventral diencephalon, in-
cluding the pituitary organizer, is shifted rostrally when
[-catenin is deleted by the WntI-cre.
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Fig. 6 a & b Hemotoxylin and eosin staining on e14.5 sagittal sections a Wild type b P0-cre; B-cat™™, arrow indicates the end of cartilage plate
that will form the sphenoid bone. c¢-j Immunostaining for B-CATENIN (green) on e14.5 sagittal sections, counterstained with DAPI (blue) c¢—f Wild
type, boxed regions in ¢ are magnified in d, e, and f. d Region highlighting the ventral diencephalon e Region highlighting the neural crest
derived mesenchyme. f Region highlighting the pituitary anterior lobe. g—j PO-cre; B-cat™™, boxed regions in g are magnified in h, i, and j. h
Region highlighting the ventral diencephalon. i Region highlighting the neural crest derived mesenchyme. j Region highlighting the pituitary
anterior lobe. Scale bars equal 100 um for a—c and g. Scale bars equal 50 um for d—f and h-j
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wild Type

POMC

Scale bars equal 100 um for all images
A\

Fig. 7 a — h Immunostaining for pituitary anterior and intermediate lobe hormones (brown) at e17.5, counterstained with methyl green (blue). a
&b POMCc&dGH e &fTSH g &h LH. a, ¢, e, & g Wild type b, d, f, & h PO-cre; ,B-CGZ'W&‘ Arrows in e, g, and h indicate positively stained cells.

PO-cre; B-cat™”™

S5

The pattern of LacZ expression in the €18.5 Wntl-cre;
Rosa**P**““ pituitary suggests that the neural crest con-
tributes to the pituitary vasculature (Fig. 1f). Therefore,
we examined the pituitary vasculature in both models of
neural crest deficient embryos using immunostaining for
CD31 (PECAM), an endothelial cell marker (Fig. 9a—h).
The blood vessels in the pituitary glands of both the
Watl-cre; f-cat™ and PO-cre; f-cat™ embryos are ab-
normally dilated at e18.5 (Fig. 9a—f). Endothelial cells
appear to be migrating into the forming pituitary anter-
ior lobe at el4.5 (Fig. 9g). Neither this pattern nor the
size of the forming endothelium is disrupted in PO-cre;
B-cal™ embryos, suggesting that the early migration of

endothelial cells into the pituitary anterior lobe is un-
affected by the loss of the neural crest (Fig. 9h). Pericytes
are cells that wrap around the endothelium and regulate
blood vessel diameter, and the pericytes of the head are
neural crest-derived [17, 18]. Pericytes express PDGFRf
at e18.5 in wild type mouse embryos (Fig. 9i). This peri-
cyte marker is absent in PO-cre; -cat™™ embryos, con-
firming that the loss of neural crest cells results in a loss
of pituitary gland pericytes (Fig. 9j). PDGEB™" or
PDGFRB™"~ mice develop dilated and leaky vasculature
throughout the body that is similar to the vascular de-
fects we observed in the pituitary glands of the PO-cre;
B-cat™* embryos [49-51].
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(See figure on previous page.)

Wnti-cre; B-cat™™

of LEF1 expression. All scale bars equal 100 um

Fig. 8 a — d Immunostaining for B-CATENIN (green) on e11.5 sagittal sections, counterstained with DAPI (blue). a and b Wild type embryo. Arrow
in a indicates the level of the infundibulum. Boxed region is magnified in b. ¢ and d Wnt1-cre; B-cat™™ embryo. Arrow in ¢ indicates the level of
the infundibulum. Boxed region is magnified in d. Arrow in d indicates cells at the posterior diencephalon and midbrain boarder deficient

for B-CATENIN. e — h Immunostaining for OTX2 (green) on e11.5 sagittal sections, counterstained with DAPI (blue). e and f Wild type embryo. Arrow
in e indicates the level of the infundibulum. Boxed region is magnified in f. Arrow in f indicates a low level of OTX2 expression. g and

h Wntl-cre; B-cat™™ embryo. Arrow in g indicates the level of the infundibulum. Boxed region is magnified in h. Arrow in h indicates a low level

of OTX2 expression. i — | Immunostaining for LEF1 (green) on e11.5 sagittal sections, counterstained with DAPI (blue). (i and j) Wild type embryo.
Arrow in i indicates the level of the infundibulum. Boxed region is magnified in j. Arrow in j indicates the boundary of LEF1 expression. k and L
embryo. Arrow in k indicates the level of the infundibulum. Boxed region is magnified in I. Arrow in L indicates the boundary

Discussion

The developing pituitary gland is surrounded by head
mesenchyme, which has a dual origin from definitive
mesoderm and neural crest [4, 24]. Using two different
neural crest expressing transgenic cre lines, we have
shown that at axial levels the head mesenchyme on the
rostral side of Rathke’s pouch is of neural crest origin.
This result is in agreement with previous fate mapping
experiments of the neural crest derived head mesen-
chyme [25]. The mesenchyme on the caudal side is de-
rived from definitive mesoderm; the rostral end of the
notochord and the prechordal mesoderm is located on
the caudal side of Rathke’s pouch [24, 26, 27]. At more
lateral levels the boundary between neural crest and de-
finitive mesoderm is still present, but the definitive
mesoderm can migrate to the rostral side of Rathke’s
pouch. The separation between head mesenchyme of
neural crest and definitive mesoderm origins on either
side of the pituitary gland presents intriguing possibil-
ities for differential effects of these mesenchymal popu-
lations on pituitary gland organogenesis. For instance,
stimulation of Notch signaling in the ventral dienceph-
alon reduces Fgfi0 expression in the pituitary organizer,
which reduces Lhx3 expression in Rathke’s pouch and
increases apoptosis [52]. Lhx3 expression is reduced
preferentially on the caudal side of Rathke’s pouch and
apoptosis is preferentially increased [52]. The differential
effects on Rathke’s pouch may be caused by signals from
the definitive mesoderm, which are not expressed in the
neural crest derived mesoderm.

Mesenchyme is known to be important for pituitary
induction [8, 12], but the specific factors involved and
source of mesenchyme were unexplored. To address the
role of neural crest derived mesenchyme on pituitary or-
ganogenesis we examined mouse embryos deficient in
neural crest. Intriguingly, ablation of neural crest using
two different promoters to drive cre-mediated excision
of pB-catenin produced two different pituitary pheno-
types. Wntl-cre mediated deletion of fS-catenin in the
neural crest produced Rathke’s pouch and pituitary an-
terior lobe dysmorphology, without an effect on cell spe-
cification, while PO-cre mediated deletion had no effect
at all, despite equally effective neural crest cell ablation.

The dysmorphic pituitary caused by Wntl-cre is likely
attributable to expansion of the pituitary organizer, in-
cluding excess Bmp4 and Fgfl0 expression, leading to
additional oral ectoderm being induced to form Rathke’s
pouch. This phenotype is similar to other models of pi-
tuitary organizer expansion that result in an enlarged
Rathke’s pouch [9, 30-32].

We considered three possibilities for how Wntl-cre
mediated inactivation of S-catenin could result in a dys-
morphic pituitary, and tested these possibilities by using
the Shh-cre and PO-cre. The data from each experiment
is summarized in Table 1. The first possibility we consid-
ered is that the neural crest pattern the ventral di-
encephalon, including establishing the rostral boundary
of the pituitary organizer, and that neural crest deficient
embryos result in a pituitary organizer boundary shift.
The neural crest regulate patterning of the forebrain and
midbrain [53-55], and could potentially affect patterning
in the ventral diencephalon. However, PO-cre, which ef-
fectively ablates S-catenin in the neural crest, does not
induce expansion of Rathke’s pouch. Therefore, the loss
of neural crest cells is unlikely to cause the expansion of
the pituitary organizer.

The second possibility is that modest, ectopic deletion
of B-CATENIN in the ventral diencephalon causes expan-
sion of the pituitary organizer. TCF7L2 (TCF4) is a tran-
scription factor that is activated by B-CATENIN, and
Tef712”~ and Wat5a™"~ embryos both have an expansion
of the pituitary organizer that leads to a dysmorphic pitu-
itary [30, 31, 56, 57]. These precedents support the idea
that the mosaic deletion of S-catenin in a few patches
within the ventral diencephalon could be recapitulating
the Wnt5a and Tcf7I2 phenotypes. However, Wntl-cre
and Shh-cre mediate similar mosaic, ectopic f-CATENIN
deletion in the ventral diencephalon, but only Wntl-cre
causes a phenotype. In addition, 3-catenin is only ablated
in a few cells of this tissue by either cre strain. Taken to-
gether, these facts argue against the possibility that the pi-
tuitary phenotype is caused by deletion of B-CATENIN in
the ventral diencephalon.

The third possibility is that Wntl-cre mediated dele-
tion of S-catenin in the midbrain results in a rostral shift
of the pituitary organizer. The major difference in
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Wild Type Wntl-cre; B-cat™*

Fig. 9 a - h Immunostaining for PECAM (green), counterstained with DAPI (blue). a Wild type e17.5 cryosection, coronal orientation b Wnti-cre;
B-cat™™ 175 cryosection, coronal orientation ¢ & e Wild type e18.5 paraffin section, coronal orientation. Boxed area in ¢ is magnified in e. d &
PO-cre; -cat”™™ e18.5 paraffin section, coronal orientation. Boxed area in d is magnified in f. Blood cells are autofluorescent (pink). g Wild type
e14.5 paraffin section, sagittal orientation. h PO-cre; B-cat™™ e14.5 paraffin section, sagittal orientation. i & j Immunostaining for PDGFRB (green),
counterstained with DAPI (blue) on e17.5 paraffin, coronal sections. i Wild type j PO-cre; ,charm, blood cells are autofluorescent (pink). All scale
bars equal 100 um
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Table 1 Summary of pituitary phenotypes when f-catenin is deleted with specific transgenic cre lines

Efficiency of B-catenin deletion in pituitary tissues

Cre transgene Neural crest Ventral diencephalon

Whnt1-cre Complete Sporadic
PO-cre Complete None
Shh-cre None Sporadic

Rathke's pouch
None
Sporadic

None

Pituitary phenotype
Dysmorphic Rathke's pouch and dilated vasculature
Normal pituitary morphology and dilated vasculature

No pituitary phenotype

expression between the Wntl-cre and the PO-cre is the ex-
pression of the Wntl-cre in the midbrain. Our Wantl-cre
fate mapping studies demonstrate that the Wntl-cre is also
active in the posterior diencephalon. When S-catenin is de-
leted in the midbrain and posterior diencephalon the pat-
terning of the entire ventral diencephalon is shifted
rostrally, including the pituitary organizer, resulting in a
dysmorphic Rathke’s pouch. Previous studies have demon-
strated that loss of Wntl or B-catenin in the mesenceph-
alon causes a loss of midbrain identity and expansion of the
hindbrain [19, 58, 59]. Wnt1 plays a critical role in estab-
lishing the isthmic organizer at the boundary between the
between the midbrain and hindbrain [60]. Initial
characterization of Wntl™~ embryos did not identify a dis-
ruption in forebrain patterning. Examination of images in a
previous characterization of Wiutl™~ embryos [59], sug-
gests that Rathke’s pouch is expanded in these embryos.
Our data indicates that canonical WNT signaling is not
only necessary for midbrain-hindbrain boundary formation,
but also proper patterning of the ventral diencephalon.

In comparison to the ectodermal structures of the pi-
tuitary gland, very little is known about the contribu-
tions of the head mesenchyme to pituitary development.
Chick explant studies demonstrate a permissive role of
mesenchyme in pituitary cell specification, and a poten-
tial inductive role of the notochord in Rathke’s pouch
formation [8]. A mesenchymal signaling component is
also supported by genetic studies in mice, where loss of
Foxdl in the mesenchyme results in an increase in pitu-
itary anterior lobe cell number and a decrease in LHf
expression [12]. It is not known what the actual meso-
dermal signal is that regulates pituitary development.
The BMP antagonist CHORDIN is expressed in the pre-
chordal mesoderm of mouse embryos, adjacent to the
caudal side of Rathke’s pouch [11]. The prechordal
plate also expresses NOGGIN, and mice that are
Chrd™"; Nog*~ develop holoprosencephaly, indicative
of midline patterning defects [61]. The Chrd™”~; Nog"~
embryos do not express Nkx2.1 in the ventral dienceph-
alon, which leads to a loss of Fgf8 expression in the pituit-
ary organizer and loss of Rathke’s pouch [61]. These
results demonstrate that the prechordal plate is necessary
for establishing the pituitary organizer in the ventral di-
encephalon, which then induces Rathke’s pouch. Direct ef-
fects of prechordal plate signaling on development of the
pituitary anterior lobe are unknown.

To begin determining what functions the head mesen-
chyme might play in pituitary organogenesis, we fate
mapped the neural crest derivatives near the pituitary
gland. Our results unequivocally demonstrate that the
neural crest produce the head mesenchyme on the ros-
tral side of Rathke’s pouch, and form a sharp boundary
with definitive mesoderm on the caudal side of Rathke’s
pouch. While this boundary has been observed sur-
rounding the eye, our results refine the position of the
boundary in relation to the pituitary gland with a sharp
demarcation occurring at the site of Rathke’s pouch in-
vagination [24]. It is intriguing to speculate that Rathke’s
pouch may provide guidance cues to neural crest cell
migration. Characterization of the embryonic pituitary
transcriptome identified 74 genes with gene ontology
(GO) terms related to cell adhesion and migration, in-
cluding genes with known roles in neural crest migration
[62]. Analysis of these candidate genes may reveal differ-
ential expression within Rathke’s pouch necessary for
directing migrating neural crest cells to the rostral side.

A critical aspect of pituitary development is the delam-
ination of cells from the tightly packed epithelium at the
ventral side of Rathke’s pouch, in a rostral direction, as
they take on the shape typical of glandular cells, and form
the rudimentary anterior lobe. This commences at ap-
proximately e12.5 and continues through gestation. Some
neural crest derived mesenchyme cells invade the forming
anterior lobe at e14.5. This is the same time that vascular
invasion is initiated [63—65]. Indeed, at later stages of pitu-
itary development the neural crest derived mesenchyme
exhibits a pattern reminiscent of vascular tissue. In the
vertebrate head, pericytes, regulatory cells which wrap
around endothelial cells, are derived from the neural crest
[17, 18]. The neural crest cells invading the anterior lobe
are likely forming the pericytes of the pituitary gland. The
vasculature of both Wutl-cre; /)’—catf"/ﬁ‘ and PO-cre; /)’—cat's‘/f"
embryos is dysmorphic and dilated, which is attributable to
the lack of regulatory pericytes, as marked by PDGFRp. Di-
lated and leaky vasculature results when pericytes are not
recruited to the endothelial cells [49, 50]. The vasculature
of the Wautl-cre; S-cat™ and PO-cre; f-cat™" pituitaries
recapitulates this phenotype and demonstrates a require-
ment for neural crest derived pericytes in pituitary vascula-
ture formation.

Neither the Wntl-cre; /)’—catfx/fx or PO-cre; ﬁ—catf"/ﬂ
embryos display a disruption in pituitary anterior lobe
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cell specification. Therefore, the neural crest derived
head mesenchyme is not necessary for normal anterior
lobe cell specification. The axial mesoderm on the cau-
dal side of Rathke’s pouch is a rich source for develop-
mental signals, which are known to pattern surrounding
tissues, including the neural tube and paraxial meso-
derm. Rathke’s pouch sits at a dynamic site at the inter-
face of definitive mesoderm, neural crest, neural
ectoderm, and oral ectoderm. Determining the precise
molecular mechanisms that each of these tissues plays in
pituitary organogenesis in mouse and other vertebrate
model systems will help in determining how this verte-
brate specific organ may have evolved.

Conclusions

Using both the Wntl-cre and the PO-cre to lineage trace
the neural crest, we determined that the mesenchyme
on the rostral side of Rathke’s pouch is neural crest in
origin. This rostral mesenchyme contributes to the vas-
culature of the pituitary gland. Deletion of a conditional
null allele of S-catenin in the neural crest lineage using
both the Wntl-cre and PO-cre generates mouse embryos
that are deficient in neural crest cells [19]. These em-
bryos have dysmorphic pituitary blood vessels and lack
PDGFRp labeled pericytes. The Wntl-cre is also active
in the mesencephalon, while the PO-cre is not. Loss of -
catenin in the mesencephalon causes a loss of midbrain
structures [19]. In addition, we have determined that
loss of B-catenin in the mesencephalon and posterior di-
encephalon is the likely cause of a rostral shift in the ex-
pression domain of Bmp4 and FgflO in the ventral
diencephalon. The altered expression domain of these
morphogenetic proteins results in a highly dysmorphic
Rathke’s pouch. Therefore, -catenin is required in the
Whntl expression domain, including the neural crest, for
the proper specification of pituitary gland growth, devel-
opment, and vascularization.

Methods

Mice

The Institutional Committee on the Use and Care of Ani-
mals for the University of Michigan and the University of
South Carolina approved all experiments using mice
(protocol number PRO00004640 at the University of
Michigan to SAC and protocol number 2106-100665-
012213 at the University of South Carolina to SWD). The
Watl-cre, Shh -cre, B-cat™, Rosa*"**%, and Rosa™""
mice were obtained from Jackson Laboratory [19-23].
The PO-cre mice were obtained from Dr. Ken-ichi Yama-
mura [21]. Mice were housed in specific pathogen free
conditions with automatic watering, ventilated cages, and
fed ad libitum. Genotyping of mice was performed as pre-
viously reported [19-23]. Observation of copulation plugs
in female mice was used to detect mating. Noon of the
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day the copulation plug was detected was established as
e0.5.

Lineage tracing

B-Galactosidase activity from the Rosa allele was
detected with X-gal staining in cryosections and embryo
whole mounts. For cryosections both cre positive and
cre negative Rosa*”’"“* embryos were fixed in 4 % para-
formaldehyde in LacZ fix for 15 min on ice, washed with
LacZ wash, equilibrated in 30 % sucrose, and embedded
in O.C.T. Compound (Tissue-Tek) in a dry ice/ethanol
bath [66]. Frozen sections were cut on a cryostat at
16 um, stained with X-gal, and counterstained with Neu-
tral Red [66]. The skin and skull were removed from cre
positive and cre negative Rosa”’*““* embryo whole
mounts to allow penetration of X-gal stain. Tissues were
fixed for 30 min in 4 % paraformaldehyde in LacZ fix at
4 C, washed three times for 30 min in LacZ wash, and
stained with X-gal stain overnight at 37 C. The pituitary
was isolated following X-gal staining and photographed
on a Leica M125 microscope with a color camera. Fluor-
escent emission from tdTomato and eGFP was visual-
ized using cre positive and cre negative Rosa”'"¢
embryos on a Leica M125 microscope with fluorescence
capabilities and photographed using a Retiga 2000R
digital camera.

stopLacZ

Histology, immunohistochemistry, and RNA in situ
hybridization

Embryos were fixed overnight in 4 % paraformaldehyde
in phosphate buffered saline (PBS) at 4 C, washed and
dehydrated, embedded in paraffin, and sectioned at
6 pm [66]. Select sections chosen for histology were
stained with hematoxylin and eosin [66].

LHX3 immunofluorescence was performed as previ-
ously reported, using a primary antibody dilution of
1:1000 (Developmental Studies Hybridoma Bank, Uni-
versity of Iowa, lowa City, IA) [30]. Immunofluorescence
for B-CATENIN (1:1000, BD Bioscience), CD31 (1:100,
PECAM, Thermo Scientific), PDGFRp (1:100, R&D Sys-
tems), OTX2 (1:1000, Abcam), and LEF1 (1:500, Santa
Cruz Biotechnology) was performed on paraffin sections.
Select sections were processed through Xylene, 100 %
ethanol, 95 % ethanol, and PBS, and boiled in 10 mM
citric acid for 10 min. Slides used for PECAM, OTX2,
and LEFlimmunohistochemistry were treated with 1.5 %
H,O, in 50 % methanol for 20 min. All slides were
treated with blocking solution from Perkin-Elmer TSA
Tyramide Signal Amplification (TSA) kits before incu-
bating with primary antibodies overnight at 4 C. Species
appropriate biotinylated secondary antibodies were used
(Jackson ImmunoResearch Laboratories), followed by
streptavidin-488 (Jackson ImmunoResearch Laborator-
ies) for PDGFRP and B-CATENIN or streptavidin-
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horseradish peroxidase for PECAM, OTX2, and LEFI.
PECAM, OTX2, and LEF1 slides were treated with TSA-
Fluorescein (Perkin-Elmer, TSA Plus Fluorescein Sys-
tem). A different PECAM antibody (BD Bioscience) and
procedure was used for Fig. 8a and b, which was per-
formed on cyrosections as previously reported [67].
Antibodies for the pituitary hormones were obtained
from the National Hormone & Peptide Program, and the
immunohistochemistry was performed as previously re-
ported, and counterstained with methyl green [68].

RNA in situ hybridization was performed as previously
reported for Six6, Bmp4, and Fgf10 [9, 28, 69].
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