39 research outputs found

    A study of the history and use of integrated marketing communications within publications from 1991--2005

    Get PDF
    Integrated Marketing Communications is a relatively new concept which combines both aspects of public relations and advertising to create a more effective and cost efficient method to maintain public awareness and support. The concept of this study is to determine the effectiveness of integrated marketing communications within businesses today. To do the researcher used the means of content analysis in ten different publications through a fifteen year span. The ten publications consisted of four public relations, four advertising and two marketing printings

    Comparative Study of Reversal Flow during the Evaporation or Condensation of Water and Ethanol Film in a Vertical Channel

    Get PDF
    A comparative study of reversal flow is carried out to investigate the effect of thermal and mass buoyancy forces with evaporation or condensation along a vertical channel. The highlight is focused on the effects of phase change of two different liquid films having widely different properties, on heat and mass transfer rates in the channel. The evaporation occurs along isothermal and wetted walls. The induced laminar upward flow consists of a mixture of blowing air and vapour of water or ethanol. Various combinations of thermal and solutal boundary conditions (cooling and heating modes) are considered to investigate extensively their influence on the flow development. A two-dimensional steady state and elliptical flow model is used and the liquid film is assumed extremely thin. The governing equations of the model are solved by FVM and the velocity-pressure fields are treated with the SIMPLER algorithm. The results show that the buoyancy forces have a significant effect on the hydrodynamic, thermal and mass fields of both gas mixtures. In addition, the flow reversal is predicted with a relatively high temperature difference between the air-mixture and the wetted walls

    Mixed convection heat and mass transfer within a vertical channel

    Get PDF
    L'objectif de ce travail est d'étudier numériquement le transfert de chaleur et de masse lors de l'évaporation d'un film liquide d'acétone, d'épaisseur négligeable, mouillant les parois d'un canal vertical. Les équations générales de conservation et les conditions aux limites associées sont discrétisées par le bais de la méthode des volumes finis. Le couplage vitesse-pression est traité par l'algorithme SIMPLER. L'étude se focalise sur l'analyse de l'effet de la vitesse et de l'humidité relative de l'air à l'entrée du canal, sur le comportement hydrodynamique, thermique et massique du flux d'air humide

    Primary differentiation in the human blastocyst : comparative molecular portraits of inner cell mass and trophectoderm cells

    Get PDF
    The primary differentiation event during mammalian development occurs at the blastocyst stage and leads to the delineation of the inner cell mass (ICM) and the trophectoderm (TE). We provide the first global mRNA expression data from immunosurgically dissected ICM cells, TE cells, and intact human blastocysts. Using a cDNA microarray composed of 15,529 cDNAs from known and novel genes, we identify marker transcripts specific to the ICM (e.g., OCT4/POU5F1, NANOG, HMGB1, and DPPA5) and TE (e.g., CDX2, ATP1B3, SFN, and IPL), in addition to novel ICM- and TE-specific expressed sequence tags. The expression patterns suggest that the emergence of pluripotent ICM and TE cell lineages from the morula is controlled by metabolic and signaling pathways, which include inter alia, WNT, mitogen-activated protein kinase, transforming growth factor-beta, NOTCH, integrin-mediated cell adhesion, phosphatidylinositol 3-kinase, and apoptosis. These data enhance our understanding of the first step in human cellular differentiation and, hence, the derivation of both embryonic stem cells and trophoblastic stem cells from these lineages

    Development of Bioinformatics Infrastructure for Genomics Research in H3Africa

    Get PDF
    Background: Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet’s role has evolved in response to changing needs from the consortium and the African bioinformatics community. Objectives: H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Methods and Results: Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for downstream interpretation of prioritized variants. To provide support for these and other bioinformatics queries, an online bioinformatics helpdesk backed by broad consortium expertise has been established. Further support is provided by means of various modes of bioinformatics training. Conclusions: For the past 4 years, the development of infrastructure support and human capacity through H3ABioNet, have significantly contributed to the establishment of African scientific networks, data analysis facilities, and training programs. Here, we describe the infrastructure and how it has affected genomics and bioinformatics research in Africa

    Development of Bioinformatics Infrastructure for Genomics Research:

    Get PDF
    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community

    Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis

    Get PDF
    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.IS

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore