785 research outputs found

    New methods for chicken embryo manipulations

    Get PDF
    The capacity to image a growing embryo while simultaneously studying the developmental function of specific molecules provides invaluable information on embryogenesis. However, until recently, this approach was accomplished with difficulty both because of the advanced technology needed and because an easy method of minimizing damage to the embryo was unavailable. Here, we present a novel way of adapting the well-known EC culture of whole chick embryos to time-lapse imaging and to functional molecular studies using blocking agents. The novelty of our method stems from the ability to apply blocking agents ex ovo as well as in ovo. We were able to study the function of a set of molecules by culturing developing embryos ex ovo in tissue culture media containing these molecules or by injecting them underneath the live embryo in ovo. The in ovo preparation is particularly valuable, because it extends the period of time during which the developmental function of the molecule can be studied and it provides an easy, reproducible method for screening a batch of molecules. These new techniques will prove very helpful in visualizing and understanding the role of specific molecules during embryonic morphogenesis, including blood vessel formation

    An integrated concurrency and core-ISA architectural envelope definition, and test oracle, for IBM POWER multiprocessors

    Get PDF
    Funding: Scottish Funding Council (SICSA Early Career Industry Fellowship)Weakly consistent multiprocessors such as ARM and IBM POWER have been with us for decades, but their subtle programmer-visible concurrency behaviour remains challenging, both to implement and to use; the traditional architecture documentation, with its mix of prose and pseudocode, leaves much unclear. In this paper we show how a precise architectural envelope model for such architectures can be defined, taking IBM POWER as our example. Our model specifies, for an arbitrary test program, the set of all its allowable executions, not just those of some particular implementation. The model integrates an operational concurrency model with an ISA model for the fixedpoint non-vector user-mode instruction set (largely automatically derived from the vendor pseudocode, and expressed in a new ISA description language). The key question is the interface between these two: allowing all the required concurrency behaviour, without overcommitting to some particular microarchitectural implementation, requires a novel abstract structure. Our model is expressed in a mathematically rigorous language that can be automatically translated to an executable test-oracle tool; this lets one either interactively explore or exhaustively compute the set of all allowed behaviours of intricate test cases, to provide a reference for hardware and software development.Postprin

    Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest

    Get PDF
    The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes

    The anthropocene biogeography of alien birds on islands: Drivers of their functional and phylogenetic diversities

    Get PDF
    A branch of island biogeography has emerged to explain alien species diversity in the light of the biogeographic and anthropogenic context, yet overlooking the functional and phylogenetic facets. Evaluating alien and native birds of 407 oceanic islands worldwide, we built structural equation models to assess the direct and indirect influence of biotic, geographic, and anthropogenic contexts on alien functional diversity (FD) and phylogenetic diversity (PD). We found that alien taxonomic richness was the main predictor of both diversities. Anthropogenic factors, including colonization pressure, associated with classic biogeographical variables also strongly influenced alien FD and PD. Specifically, habitat modification and human connectivity markedly drove alien FD, especially when controlled by taxonomic richness, whereas the human population size, gross domestic product, and native PD were crucial at explaining alien PD. Our findings suggest that humans not only shape taxonomic richness but also other facets of alien diversity in a complex way

    Assessing the ecological risk posed by a recently established invasive alien predator: Harmonia axyridis as a case study

    Get PDF
    Invasive alien predators are a serious threat to biodiversity worldwide. However, there is no generic method for assessing which local species are most at risk following the invasion of a new predator. The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an alien in Europe and many other parts of the world where it affects other species of ladybirds through competition for food and intra-guild predation (IGP). Here, we describe a method developed to assess which European ladybird species are most at risk following the invasion of H. axyridis. The three components of the risk assessment are: the likelihood that the assessed native species encounters H. axyridis in the field, the hazard of competition for food, and the IGP hazard. Thirty native European ladybird species were assessed through data obtained from field observations, laboratory experiments and literature reviews. The species that are considered most at risk are found on deciduous trees, have immature stages which are highly vulnerable to IGP by H. axyridis, and are primarily aphidophagous. These species should be the focus of specific studies and possibly conservation actions. The risk assessment method proposed here could be applied to other alien predators which are considered a threat to native species through competition and predation

    First finds of Prunus domestica L. in Italy from the Phoenician and Punic periods (6th-2nd centuries BC)

    Get PDF
    Abstract During the archaeological excavations in the Phoenician and Punic settlement of Santa Giusta (Oristano, Sardinia, Italy), dating back to the 6th–2nd centuries bc, several Prunus fruitstones (endocarps) inside amphorae were recovered. The exceptional state of preservation of the waterlogged remains allowed morphometric measurements to be done by image analysis and statistical comparisons made with modern cultivated and wild Prunus samples collected in Sardinia. Digital images of modern and archaeological Prunus fruitstones were acquired with a flatbed scanner and analysed by applying image analysis techniques to measure 26 morphometric features. By applying stepwise linear discriminant analysis, a morphometric comparison was made between the archaeological fruitstones of Prunus and the modern ones collected in Sardinia. These analyses allowed identification of 53 archaeological fruitstones as P. spinosa and 11 as P. domestica. Moreover, the archaeological samples of P. spinosa showed morphometric similarities in 92.5% of the cases with the modern P. spinosa samples currently growing near the Phoenician and Punic site. Likewise, the archaeological fruitstones identified as P. domestica showed similarities with the modern variety of P. domestica called Sanguigna di Bosa which is currently cultivated near the village of Bosa. Currently, these findings represent the first evidence of P. domestica in Italy during the Phoenician and Punic periods. Keywords Archaeobotany · Image analysis · Morphometric features · Prunus · Sardini

    Global distribution of alien mammals under climate change

    Get PDF
    The recent thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services reaffirmed biological invasions as a major threat to biodiversity. Anticipating biological invasions is crucial for avoiding their ecological and socio-economic impacts, particularly as climate change may provide new opportunities for the establishment and spread of alien species. However, no studies have combined assessments of suitability and dispersal to evaluate the invasion by key taxonomic groups, such as mammals. Using species distribution models, we estimated the potential effect of climate change on the future distributions of 205 alien mammal species by the year 2050 under three different climatic scenarios. We used species dispersal ability to differentiate between suitable areas that may be susceptible to natural dispersal from alien ranges (Spread Potential, SP) and those that may be vulnerable to alien establishment through human-assisted dispersal (Establishment Potential, EP) across 11 zoogeographic realms. Establishment Potential was generally boosted by climate change, showing a clear poleward shift across scenarios, whereas SP was negatively affected by climate change and limited by alien species insularity. These trends were consistent across all realms. Insular ecosystems, while being vulnerable to invasion, may act as geographical traps for alien mammals that lose climatic suitability. In addition, our analysis identified the alien species that are expected to spread or decline the most in each realm, primarily generalists with high invasive potential, as likely foci of future management efforts. In some areas, the possible reduction in suitability for alien mammals could offer opportunities for ecosystem restoration, particularly on islands. In others, increased suitability calls for adequate actions to prevent their arrival and spread. Our findings are potentially valuable in informing synergistic actions addressing both climate change and biological invasion together to safeguard native biodiversity worldwide

    Patterns and drivers of climatic niche dynamics during biological invasions of island-endemic amphibians, reptiles, and birds

    Get PDF
    Shifts between native and alien climatic niches pose a major challenge for predicting biological invasions. This is particularly true for insular species because geophysical barriers could constrain the realization of their fundamental niches, which may lead to underestimates of their invasion potential. To investigate this idea, we estimated the frequency of shifts between native and alien climatic niches and the magnitude of climatic mismatches using 80,148 alien occurrences of 46 endemic insular amphibian, reptile, and bird species. Then, we assessed the influence of nine potential predictors on climatic mismatches across taxa, based on species' characteristics, native range physical characteristics, and alien range properties. We found that climatic mismatch is common during invasions of endemic insular birds and reptiles: 78.3% and 55.1% of their respective alien records occurred outside of the environmental space of species' native climatic niche. In comparison, climatic mismatch was evident for only 16.2% of the amphibian invasions analyzed. Several predictors significantly explained climatic mismatch, and these varied among taxonomic groups. For amphibians, only native range size was associated with climatic mismatch. For reptiles, the magnitude of climatic mismatch was higher for species with narrow native altitudinal ranges, occurring in topographically complex or less remote islands, as well as for species with larger distances between their native and alien ranges. For birds, climatic mismatch was significantly larger for invasions on continents with higher phylogenetic diversity of the recipient community, and when the invader was more evolutionarily distinct. Our findings highlight that apparently common niche shifts of insular species may jeopardize our ability to forecast their potential invasions using correlative methods based on climatic variables. Also, we show which factors provide additional insights on the actual invasion potential of insular endemic amphibians, reptiles, and birds
    corecore