40 research outputs found

    Development of an activity disease score in patients with uveitis (UVEDAI)

    Get PDF
    To develop a disease activity index for patients with uveitis (UVEDAI) encompassing the relevant domains of disease activity considered important among experts in this field. The steps for designing UVEDAI were: (a) Defining the construct and establishing the domains through a formal judgment of experts, (b) A two-round Delphi study with a panel of 15 experts to determine the relevant items, (c) Selection of items: A logistic regression model was developed that set ocular inflammatory activity as the dependent variable. The construct "uveitis inflammatory activity" was defined as any intraocular inflammation that included external structures (cornea) in addition to uvea. Seven domains and 15 items were identified: best-corrected visual acuity, inflammation of the anterior chamber (anterior chamber cells, hypopyon, the presence of fibrin, active posterior keratic precipitates and iris nodules), intraocular pressure, inflammation of the vitreous cavity (vitreous haze, snowballs and snowbanks), central macular edema, inflammation of the posterior pole (the presence and number of choroidal/retinal lesions, vascular inflammation and papillitis), and global assessment from both (patient and physician). From all the variables studied in the multivariate model, anterior chamber cell grade, vitreous haze, central macular edema, inflammatory vessel sheathing, papillitis, choroidal/retinal lesions and patient evaluation were included in UVEDAI. UVEDAI is an index designed to assess the global ocular inflammatory activity in patients with uveitis. It might prove worthwhile to motorize the activity of this extraarticular manifestation of some rheumatic diseases

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Micromagnetic Modeling of All Optical Switching of Ferromagnetic Thin Films: The Role of Inverse Faraday Effect and Magnetic Circular Dichroism

    No full text
    There is a lot of experimental evidence of All Optical Switching (AOS) by applying ultrashort laser pulses on ferromagnetic thin films with perpendicular magnetic anisotropy. However, the physical origin behind these processes remains under debate. In addition to the heating caused by the laser pulses, the Inverse Faraday Effect (IFE) and Magnetic Circular Dichroism (MCD) have been proposed as the most probable phenomena responsible for the observations of helicity-dependent AOS. Here, we review the influence of both phenomena by means of realistic micromagnetic simulations based on the Landau–Lifshitz–Bloch equation coupled to the heat transport caused by the laser heating. The analysis allows us to reveal the similarities and differences between both effects. While both mechanisms may lead to the local inversion of the initial magnetic state of a ferromagnetic sample submitted to a train of circularly polarized laser pulses, the Inverse Faraday Effect proves to be more efficient for nucleation and domain wall movement and it reproduces more accurately the different magnetic configurations that the experiments report for different values of the fluence of the laser beam

    Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coa catabolon

    No full text
    14 pages, 8 figures, 6 tables.-- PMID: 10506180 [PubMed]The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EMBL Data Bank with accession number(s) AF150669, AF150670, AF150671 and AF150672.Novel biodegradable bacterial plastics, made up of units of 3-hydroxy-n-phenylalkanoic acids, are accumulated intracellularly by Pseudomonas putida U due to the existence in this bacterium of (i) an acyl-CoA synthetase (encoded by the fadD gene) that activates the aryl-precursors; (ii) a beta-oxidation pathway that affords 3-OH-aryl-CoAs, and (iii) a polymerization-depolymerization system (encoded in the pha locus) integrated by two polymerases (PhaC1 and PhaC2) and a depolymerase (PhaZ). The complete assimilation of these compounds requires two additional routes that specifically catabolize the phenylacetyl-CoA or the benzoyl-CoA generated from these polyesters through beta-oxidation. Genetic studies have allowed the cloning, sequencing, and disruption of the genes included in the pha locus (phaC1, phaC2, and phaZ) as well as those related to the biosynthesis of precursors (fadD) or to the catabolism of their derivatives (acuA, fadA, and paa genes). Additional experiments showed that the blockade of either fadD or phaC1 hindered the synthesis and accumulation of plastic polymers. Disruption of phaC2 reduced the quantity of stored polymers by two-thirds. The blockade of phaZ hampered the mobilization of the polymer and decreased its production. Mutations in the paa genes, encoding the phenylacetic acid catabolic enzymes, did not affect the synthesis or catabolism of polymers containing either 3-hydroxyaliphatic acids or 3-hydroxy-n-phenylalkanoic acids with an odd number of carbon atoms as monomers, whereas the production of polyesters containing units of 3-hydroxy-n-phenylalkanoic acids with an even number of carbon atoms was greatly reduced in these bacteria. Yield-improving studies revealed that mutants defective in the glyoxylic acid cycle (isocitrate lyase(-)) or in the beta-oxidation pathway (fadA), stored a higher amount of plastic polymers (1.4- and 2-fold, respectively), suggesting that genetic manipulation of these pathways could be useful for isolating overproducer strains. The analysis of the organization and function of the pha locus and its relationship with the core of the phenylacetyl-CoA catabolon is reported and discussed.This investigation was supported by Comision Interministerial de Ciencia y Tecnología Madrid Grants AMB97-0603-C02-01 and AMB97-0603-C02-02, Fondo Europeo de Desarrollo Regional Grant 1FD97-0245, and Junta de Castilla y León Grant LE 42/96.Peer reviewe
    corecore