119 research outputs found
Impact performance of out of die UV cured pultruded profiles for vessel structures
The main objective of FIBRE4YARDS project is to maintain European global leadership in ship building and ship maintenance, through implementation of the Shipyard 4.0 concept in which advanced and innovative FRP manufacturing technologies are successfully introduced. This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n°101006860
Dual Mechanisms of LYN Kinase Dysregulation Drive Aggressive Behavior in Breast Cancer Cells
The SRC-family kinase LYN is highly expressed in triple-negative/basal-like breast cancer (TNBC) and in the cell of origin of these tumors, c-KIT-positive luminal progenitors. Here, we demonstrate LYN is a downstream effector of c-KIT in normal mammary cells and protective of apoptosis upon genotoxic stress. LYN activity is modulated by PIN1, a prolyl isomerase, and in BRCA1 mutant TNBC PIN1 upregulation activates LYN independently of c-KIT. Furthermore, the full-length LYN splice isoform (as opposed to the Δaa25-45 variant) drives migration and invasion of aggressive TNBC cells, while the ratio of splice variants is informative for breast cancer-specific survival across all breast cancers. Thus, dual mechanisms-uncoupling from upstream signals and splice isoform ratios-drive the activity of LYN in aggressive breast cancers
A Sox2–Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells
Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer
An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models
Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Polyoxometalate inhibition of SOX2-mediated tamoxifen resistance in breast cancer
Background
Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells.
Methods
Various POM derivatives were synthesised and characterised by infrared spectra, powder X-ray diffraction pattern and nuclear magnetic resonance spectroscopy. Estrogen receptor (ER) positive breast cancer cells, and their counterparts, which have developed resistance to the hormone therapy tamoxifen, were treated with POMs and their consequences assessed by gel retardation and chromatin immunoprecipitation to determine SOX2 binding to DNA. Effects on proliferation, migration, invasion and tumorigenicity were monitored and quantified using microscopy, clone formation, transwell, wound healing assays, flow cytometry and in vivo chick chorioallantoic membrane (CAM) models. Generation of lentiviral stable gene silencing and gene knock-out using CRISPR-Cas9 genome editing were applied to validate the inhibitory effects of the selected POM. Cancer stem cell subpopulations were quantified by mammosphere formation assays, ALDEFLUOR activity and CD44/CD24 stainings. Flow cytometry and western blotting were used to measure reactive oxygen species (ROS) and apoptosis.
Results
POMs blocked in vitro binding activity of endogenous SOX2. [P2W18O62]6− (PW) Wells-Dawson-type anion was the most effective at inhibiting proliferation in various cell line models of tamoxifen resistance. 10 µM PW also reduced cancer cell migration and invasion, as well as SNAI2 expression levels. Treatment of tamoxifen-resistant cells with PW impaired tumour formation by reducing CSC content, in a SOX2-dependent manner, which led to stem cell depletion in vivo. Mechanistically, PW induced formation of reactive oxygen species (ROS) and inhibited Bcl-2, leading to the death of tamoxifen-resistant cells. PW-treated tamoxifen-resistant cells showed restored sensitivity to tamoxifen.
Conclusions
Together, these observations highlight the potential use of PW as a SOX2 inhibitor and the therapeutic relevance of targeting SOX2 to treat tamoxifen-resistant breast cancer.The authors thank grant support from the Basque Government (IT1722-22 and Elkartek KK-2022/00045) and Spanish Ministry of Science, Innovation and Universities (MICINN, grant PID2022-139530NB-I00) (JMGZ). This research was also funded by Elkartek (KK-2022/00045) by the Basque Government (MdMV), and by the Spanish Ministry of Science and Innovation MCIN/AEI/https://doi.org/10.13039/501100011033 (to MdMV and RK: CEX2021-001136-S; PRE2018-087073 to IG; PID2020-118464RB-I00 to MdMV, and PID2020-117649RB-100 to RK)
The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven Mammary Inflammation and Breast Cancer Development
Many inflammation-associated diseases, including cancers, increase in women after menopause and with obesity. In contrast to anti-inflammatory actions of 17β-estradiol, we find estrone, which dominates after menopause, is pro-inflammatory. In human mammary adipocytes, cytokine expression increases with obesity, menopause, and cancer. Adipocyte:cancer cell interaction stimulates estrone- and NFκB-dependent pro-inflammatory cytokine upregulation. Estrone- and 17β-estradiol-driven transcriptomes differ. Estrone:ERα stimulates NFκB-mediated cytokine gene induction; 17β-estradiol opposes this. In obese mice, estrone increases and 17β-estradiol relieves inflammation. Estrone drives more rapid ER+ breast cancer growth in vivo. HSD17B14, which converts 17β-estradiol to estrone, associates with poor ER+ breast cancer outcome. Estrone and HSD17B14 upregulate inflammation, ALDH1 activity, and tumorspheres, while 17β-estradiol and HSD17B14 knockdown oppose these. Finally, a high intratumor estrone:17β-estradiol ratio increases tumor-initiating stem cells and ER+ cancer growth in vivo. These findings help explain why postmenopausal ER+ breast cancer increases with obesity, and offer new strategies for prevention and therapy.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 84510
Neddylation inhibition prevents acetaminophen-induced liver damage by enhancing the anabolic cardiolipin pathway
\ua9 2024 The AuthorsDrug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment
Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids
[Background and Aims] Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation.[Approach and Results] The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA.[Conclusions] Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.This work was supported by “Ayudas para apoyar grupos de investigación del sistema Universitario Vasco” (IT971‐16 to PA), MCIU/AEI/FEDER, UE (2018‐095134‐B‐100 to PA and by the University of Basque Country COLAB20/01 to PA; Spanish Carlos III Health Institute (ISCIII) (FIS PI15/01132, PI18/01075, PI21/00922, and Miguel Servet Program CON14/00129 and CPII19/00008 to JMB; FIS PI14/00399, PI17/00022 and PI20/00186 to MJP; Sara Borrell [CD19/00254 to PMR]) cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); CIBERehd (ISCIII) to JMB, MJP, PMR, PA and LB); “Diputación Foral Gipuzkoa” (DFG15/010, DFG16/004 to JMB and 2020‐CIEN‐000067‐01 to PMR), Department of Health of the Basque Country (2019111024 to MJP, 2017111010 to JMB, and 2020111077 to JMB and PA), “Euskadi RIS3” (2016222001, 2017222014, 2018222029, 2019222054, 2020333010 to JMB), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to JMB) and Department of Industry of the Basque Country (Elkartek: KK‐2020/00008 to JMB); La Caixa Scientific Foundation (HR17‐00601 to JMB). “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation, to JMB). AMMF‐The Cholangiocarcinoma Charity (EU/2019/AMMFt/001, to JMB and PMR). MRDG was funded by “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC de Bizkaia), MJP was funded by the Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Program RYC‐2015‐17755), IL, AL and FG‐R by the Basque Government (PRE_2016_1_0152, PRE_2018_2_0195 and PRE 2020 2 02500, respectively), AN‐Z and BG‐S by the UPV/EHU, AB‐V by “Programa de especialización de Personal Investigador Doctor” at the UPV/EHU (2019‐2020) and MA by the MCIU/AEI/FEDER
- …