

Faculty of Engineering

Impact performance of out of die UV cured pultruded profiles for vessel structures

I. Ruiz de Eguino, I. Saenz-Dominguez, I. Tena, A. Arruti, M. Sarrionandia, J. Aurrekoetxea Lausanne, Switzerland, 26-30th June 2022

Index

Introduction

- Motivation
- Objectives

Experimental development

- Physical characterization
- Impact resistance
- Delamination assessment
- Damage tolerance

Conclusions

Future lines

Composites in Shipbuilding

Faculty of Engineering

Source: RTVE Fabricando Made in Spain - Barcos.

Grant Agreement No. 101006860

Composites in Shipbuilding

Faculty of Engineering

Lack of robustness

Source: RTVE Fabricando Made in Spain - Barcos.

Grant Agreement No. 101006860

Out of die UV cured pultrusion

Reinforcement

Resin tank

Source: A. Landesmann, C. A. Seruti, and E. d. M. Batista, "Mechanical Properties of Glass Fiber Reinforced Polymers Members for Structural Applications," Materials Research, vol. 18, no. 6, pp. 1372-1383, Nov. 2015, issn: 1516-1439,

Surfacing

Heated

Puller

Profile

Cutter

Roving

doi: 10.1590/1516-1439.044615.

https://www.iamco.co.ip/en/business/ico/adp/adp_process.html.

Source: T. Liu, P. Feng, Y.Wu, S. Liao, and X. Meng, "Developing an innovative curved-pultruded large-scale GFRP arch beam, "Composite Structures, vol. 256, 2021. doi: 10.1016/j.compstruct.2020.113111.

- Source: Jamco Advanced Pultrusion Process. [Online]. Available:

Source: ShapeCORP. [Online]. Available: https://www.shapecorp.com/manufacturing/composites/

- ✓ Continuous process
- ✓ Automated operation of the line
- ✓ High productivity
- ✓ High mechanical properties in the longitudinal direction
- ✓ High flexibility
- × Constant cross section
- × High pulling forces
- × High investment on machinery
- × Limited to shapes with a constant curvature

Out of die UV cured pultrusion

Only **straight** profiles

Source: Jamco Advanced Pultrusion Process. [Online]. Available: https://www.iamco.co.in/en/husiness/ico/adn/adn_process.html

Source: T. Liu, P. Feng, Y.Wu, S. Liao, and X. Meng, "Developing an innovative curved-pultruded large-scale GFRP arch beam, "Composite Structures, vol. 256, 2021. doi: 10.1016/j.compstruct.2020.113111.

- ✓ Continuous process
- ✓ Automated operation of the line
- ✓ High productivity
- ✓ High mechanical properties in the longitudinal direction
- ✓ High flexibility
- × Constant cross section
- × High pulling forces
- × High investment on machinery
- Limited to shapes with a constant curvature

Curing inside the die

Out of die UV cured pultrusion

To cure the profile **out of the die** and change the paradigm of conventional pultrusion technologies

- ✓ Continuous process
- ✓ Automated operation of the line
- ✓ High productivity
- ✓ High mechanical properties in the longitudinal direction
- ✓ High flexibility
- × Constant cross section
- ✓ Low pulling forces
- ✓ Moderate investment in machinery
- √ Shapes with variable curvatures
- × No opaque reinforcements
- Profile thickness limited by radiation penetration

Q

Transversal mechanical behaviour

Analyse how the **impact response of stiffeners** could be improved by taking advantage of the **greater freedom for defining the reinforcement configuration** on profiles manufactured by **out of die UV cured pultrusion**.

Materials and physical characterization

Vinyl ester acrylate resin formulation

IRUCRIL GFR-30 LED

Provided by:

Faculty of Engineering

Experimental techniques

Drop weight low velocity impact test

Fractovis-Plus (CEAST) testing machine

- Flat square specimens (3 mm thick and 75 mm wide)
- Clamping ring (Ø 40 mm inner and Ø 60 mm outer)
- Initial drop heights 50 1000 mm
- Striker masses 2 20 kg
- Incident impact energies 1 200 J
- Hemispherical instrumented striker (Ø 20 mm) with a 20 kN load cell

Backlighting delamination assessment

Computer vision aided delamination contour recognition

Engineering

Impact resistance

Pultruded composite	Critical energy [J]
Reference	1.2
Multiaxial	1.3

Impact resistance

Pultruded composite	Critical energy [J]	Penetration threshold [J]		Perforation threshold [J]	
Reference	1.2	50		75	
Multiaxial	1.3	115 √ +12	25 %	140	√ +85 %

Mondragon Unibertsitatea Faculty of Engineering

IRURENAS ROUP

Delamination assessment

Delamination contours after a 25 J impact event

Reference configuration

Multiaxial configuration

Delamination assessment

Multiaxial

configuration

Delamination contours after a 25 J impact event

Reference configuration

✓ The multiaxial configuration restrains the extent of the delaminated area in the transversal direction.

Damage tolerance

Feraboli et al.

Composites Science and Technology 66 (2006) 10:1336-47

Subcritical impact

Critical impact

Subcritical impact

Damage tolerance

Feraboli et al.

Composites Science and Technology 66 (2006) 10:1336-47

Subcritical impact

Critical impact

Subcritical impact

✓ The multiaxial configuration retains a 60 % of its original stiffness, even when presenting delamination of a considerable extent due to a 30 J impact event.

IRURENA ROUF

Conclusions

✓ The impact response and damage tolerance of vessel structures stiffeners could be enhanced with the reinforcement configurations that can be manufactured by out of die UV cured pultrusion.

bearing capacity

Future lines

• Open Hole tensile strength tests on the same analysed reinforcement configuration.

• Top-hat stiffener profiles for the F4Y demonstrator superstructure with a variable curvature.

Acknowledgements

Mondragon Unibertsitatea Faculty of Engineering

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006860.

Hazitek AVACO ZL-2021/00703 Elkartek AVANSITE KK-2020/00019

Goi Eskola Politeknikoa

Faculty of Engineering

Impact performance of out of die UV cured pultruded profiles for vessel structures

Imanol Ruiz de Eguino Aguirre

iruizdeeguino@mondragon.edu

