42 research outputs found

    Co-oligomers Based on 2-Methoxy, 5-(2’-ethylhexyloxy) phenylene and Thienylenevinylene for Organic Solar Cells

    Get PDF
    Thanks to their optoelectronic properties and specific applications such as organic solar cells, the research on the lower band gap of organic p-conjugated materials encompassing both polymers and oligomers have been widely studied over the last years. The control of the band gap of these materials is a research issue of ongoing interest. In this study, theoretical study using the DFT method on four oligomers based on 2-methoxy, 5-(2’-ethylhexyloxy) phenylene and thienylenevinylene is reported. The theoretical ground-state geometry and electronic structure of the studied molecules were obtained by the DFT method at the B3LYP level with a 6–31G (d) basis set. Theoretical knowledge of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels the gap energy (Eg) and the open-circuit voltage (Voc) of the studied compounds are calculated and discussed. The results of this work suggest these materials as a good candidate for organic solar cells. DOI: http://dx.doi.org/10.17807/orbital.v8i3.80

    Co-oligomers Based on 2-Methoxy, 5-(2’-ethylhexyloxy) phenylene and Thienylenevinylene for Organic Solar Cells

    Get PDF
    Thanks to their optoelectronic properties and specific applications such as organic solar cells, the research on the lower band gap of organic p-conjugated materials encompassing both polymers and oligomers have been widely studied over the last years. The control of the band gap of these materials is a research issue of ongoing interest. In this study, theoretical study using the DFT method on four oligomers based on 2-methoxy, 5-(2’-ethylhexyloxy) phenylene and thienylenevinylene is reported. The theoretical ground-state geometry and electronic structure of the studied molecules were obtained by the DFT method at the B3LYP level with a 6–31G (d) basis set. Theoretical knowledge of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels the gap energy (Eg) and the open-circuit voltage (Voc) of the studied compounds are calculated and discussed. The results of this work suggest these materials as a good candidate for organic solar cells. DOI: http://dx.doi.org/10.17807/orbital.v8i3.80

    Allopurinol mouthwash for prevention or alleviation radiotherapy induced oral mucositis: A randomized, placebo-controlled trial

    Get PDF
    Background and the purpose of the study: A randomized, double-blind, placebo-controlled trial was conducted to evaluate the effectiveness of an allopurinol mouthwash in prevention and alleviation of the oral radiotherapy induced mucositis. Methods: An allopurinol suspension mouthwash having proper physical stability at least for 6 weeks was prepared. A total of 24 patients with oral, nasopharynx or hypopharynx cancer were enrolled in the study. They were randomly allocated to receive either an allopurinol suspension or normal saline as placebo that were identical in appearance. Patients were instructed to use the suspension as a mouthwash 3 times a day for 3 minutes after beginning of each radiotherapy cycle. Patients were graded on the basis of severity of their own symptoms on a weekly basis by using WHO scale. Results: There were no differences in the severity of mucosits between the allopurinol and placebo-treated groups in first and second weeks of treatment (p =0.227, p = 0.121 respectively). In the third, fourth, fifth and sixth weeks, there were significant differences between two groups (p< 0.05 in each weeks separately). Major conclusion: Result of this study support the hypothesis that an allopurinol mouthwash may prevents or alleviate oral mucositis induced by radiotherapy

    Bioactive strawberry fruit (Arbutus unedo L.) extract remedies paraquat-induced neurotoxicity in the offspring prenatally exposed rats

    Get PDF
    BackgroundParaquat (1,1′-dimethyl-4-4′-bipyridinium dichloride) exposure is well-established as a neurotoxic agent capable of causing neurological deficits in offspring. This study aimed to investigate therapeutic effects of Arbutus unedo L. aqueous extract (AU) against paraquat (PQ) exposure.MethodsFor that the phytoconstituents of AU was determined by LC/MS, and then its antioxidant potential was assessed by DPPH and ABTS assays. The assessment included its impact on cell viability and mitochondrial metabolism using N27 dopaminergic cells. Additionally, we evaluated the effects of prenatal PQ exposure on motor coordination, dopamine levels, trace element levels, and total antioxidant capacity (TAC) in rat progeny.ResultsThe phytochemical profile of AU extract revealed the presence of 35 compounds, primarily phenolic and organic acids, and flavonoids. This accounted for its strong in vitro antioxidant activities against DPPH and ABTS radicals, surpassing the activities of vitamin C. Our findings demonstrated that AU effectively inhibited PQ-induced loss of N27 rat dopaminergic neural cells and significantly enhanced their mitochondrial respiration. Furthermore, daily post-treatment with AU during the 21 days of the rat's pregnancy alleviated PQ-induced motor deficits and akinesia in rat progeny. These effects inhibited dopamine depletion and reduced iron levels in the striatal tissues. The observed outcomes appeared to be mediated by the robust antioxidant activity of AU, effectively counteracting the PQ-induced decrease in TAC in the blood plasma of rat progeny. These effects could be attributed to the bioactive compounds present in AU, including phenolic acids such as gallic acid and flavonoids such as quercetin, rutin, apigenin, glucuronide, and kaempferol, all known for their potent antioxidant capacity.DiscussionIn conclusion, this preclinical study provided the first evidence of the therapeutic potential of AU extract against PQ-induced neurotoxicity. These findings emphasize the need for further exploration of the clinical applicability of AU in mitigating neurotoxin-induced brain damage

    Age-dependent effects of protein restriction on dopamine release

    Get PDF
    FUNDING AND DISCLOSURE This work was supported by the Biotechnology and Biological Sciences Research Council [grant # BB/M007391/1 to J.E.M.], the European Commission [grant # GA 631404 to J.E.M.], The Leverhulme Trust [grant # RPG-2017-417 to J.E.M.] and the Tromsø Research Foundation [grant # 19-SG-JMcC to J. E. M.). The authors declare no conflict of interest. ACKNOWLEDGEMENTS The authors would like to acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals.Peer reviewedPublisher PD

    Data_Sheet_8_Bioactive strawberry fruit (Arbutus unedo L.) extract remedies paraquat-induced neurotoxicity in the offspring prenatally exposed rats.xlsx

    No full text
    BackgroundParaquat (1,1′-dimethyl-4-4′-bipyridinium dichloride) exposure is well-established as a neurotoxic agent capable of causing neurological deficits in offspring. This study aimed to investigate therapeutic effects of Arbutus unedo L. aqueous extract (AU) against paraquat (PQ) exposure.MethodsFor that the phytoconstituents of AU was determined by LC/MS, and then its antioxidant potential was assessed by DPPH and ABTS assays. The assessment included its impact on cell viability and mitochondrial metabolism using N27 dopaminergic cells. Additionally, we evaluated the effects of prenatal PQ exposure on motor coordination, dopamine levels, trace element levels, and total antioxidant capacity (TAC) in rat progeny.ResultsThe phytochemical profile of AU extract revealed the presence of 35 compounds, primarily phenolic and organic acids, and flavonoids. This accounted for its strong in vitro antioxidant activities against DPPH and ABTS radicals, surpassing the activities of vitamin C. Our findings demonstrated that AU effectively inhibited PQ-induced loss of N27 rat dopaminergic neural cells and significantly enhanced their mitochondrial respiration. Furthermore, daily post-treatment with AU during the 21 days of the rat's pregnancy alleviated PQ-induced motor deficits and akinesia in rat progeny. These effects inhibited dopamine depletion and reduced iron levels in the striatal tissues. The observed outcomes appeared to be mediated by the robust antioxidant activity of AU, effectively counteracting the PQ-induced decrease in TAC in the blood plasma of rat progeny. These effects could be attributed to the bioactive compounds present in AU, including phenolic acids such as gallic acid and flavonoids such as quercetin, rutin, apigenin, glucuronide, and kaempferol, all known for their potent antioxidant capacity.DiscussionIn conclusion, this preclinical study provided the first evidence of the therapeutic potential of AU extract against PQ-induced neurotoxicity. These findings emphasize the need for further exploration of the clinical applicability of AU in mitigating neurotoxin-induced brain damage.</p
    corecore