175 research outputs found

    Point sets that minimize (k)(\le k)-edges, 3-decomposable drawings, and the rectilinear crossing number of K30K_{30}

    Get PDF
    There are two properties shared by all known crossing-minimizing geometric drawings of KnK_n, for nn a multiple of 3. First, the underlying nn-point set of these drawings has exactly 3(k+22)3\binom{k+2}{2} (k)(\le k)-edges, for all 0k<n/30\le k < n/3. Second, all such drawings have the nn points divided into three groups of equal size; this last property is captured under the concept of 3-decomposability. In this paper we show that these properties are tightly related: every nn-point set with exactly 3(k+22)3\binom{k+2}{2} (k)(\le k)-edges for all 0k<n/30\le k < n/3, is 3-decomposable. As an application, we prove that the rectilinear crossing number of K30K_{30} is 9726.Comment: 14 page

    Quasi-infra-red fixed points and renormalisation group invariant trajectories for non-holomorphic soft supersymmetry breaking

    Get PDF
    In the MSSM the quasi-infra-red fixed point for the top-quark Yukawa coupling gives rise to specific predictions for the soft-breaking parameters. We discuss the extent to which these predictions are modified by the introduction of additional ``non-holomorphic'' soft-breaking terms. We also show that in a specific class of theories there exists an RG-invariant trajectory for the ``non-holomorphic'' terms, which can be understood using a holomorphic spurion term.Comment: 24 pages, TeX, two figures. Uses Harvmac (big) and epsf. Minor errors corrected, and the RG trajectory explained in terms of a holomorphic spurion ter

    Balanced Islands in Two Colored Point Sets in the Plane

    Get PDF
    Let SS be a set of nn points in general position in the plane, rr of which are red and bb of which are blue. In this paper we prove that there exist: for every α[0,12]\alpha \in \left [ 0,\frac{1}{2} \right ], a convex set containing exactly αr\lceil \alpha r\rceil red points and exactly αb\lceil \alpha b \rceil blue points of SS; a convex set containing exactly r+12\left \lceil \frac{r+1}{2}\right \rceil red points and exactly b+12\left \lceil \frac{b+1}{2}\right \rceil blue points of SS. Furthermore, we present polynomial time algorithms to find these convex sets. In the first case we provide an O(n4)O(n^4) time algorithm and an O(n2logn)O(n^2\log n) time algorithm in the second case. Finally, if αr+αb\lceil \alpha r\rceil+\lceil \alpha b\rceil is small, that is, not much larger than 13n\frac{1}{3}n, we improve the running time to O(nlogn)O(n \log n)

    Maximizing Maximal Angles for Plane Straight-Line Graphs

    Get PDF
    Let G=(S,E)G=(S, E) be a plane straight-line graph on a finite point set SR2S\subset\R^2 in general position. The incident angles of a vertex pSp \in S of GG are the angles between any two edges of GG that appear consecutively in the circular order of the edges incident to pp. A plane straight-line graph is called ϕ\phi-open if each vertex has an incident angle of size at least ϕ\phi. In this paper we study the following type of question: What is the maximum angle ϕ\phi such that for any finite set SR2S\subset\R^2 of points in general position we can find a graph from a certain class of graphs on SS that is ϕ\phi-open? In particular, we consider the classes of triangulations, spanning trees, and paths on SS and give tight bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that were omitted in the previous version are now include

    Embedding Four-directional Paths on Convex Point Sets

    Full text link
    A directed path whose edges are assigned labels "up", "down", "right", or "left" is called \emph{four-directional}, and \emph{three-directional} if at most three out of the four labels are used. A \emph{direction-consistent embedding} of an \mbox{nn-vertex} four-directional path PP on a set SS of nn points in the plane is a straight-line drawing of PP where each vertex of PP is mapped to a distinct point of SS and every edge points to the direction specified by its label. We study planar direction-consistent embeddings of three- and four-directional paths and provide a complete picture of the problem for convex point sets.Comment: 11 pages, full conference version including all proof

    Flip Graphs of Degree-Bounded (Pseudo-)Triangulations

    Full text link
    We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant kk. In particular, we consider triangulations of sets of nn points in convex position in the plane and prove that their flip graph is connected if and only if k>6k > 6; the diameter of the flip graph is O(n2)O(n^2). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k9k \leq 9, and flip graphs of triangulations can be disconnected for any kk. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound kk by a small constant. Any two triangulations with maximum degree at most kk of a convex point set are connected in the flip graph by a path of length O(nlogn)O(n \log n), where every intermediate triangulation has maximum degree at most k+4k+4.Comment: 13 pages, 12 figures, acknowledgments update

    Quadratic-time, linear-space algorithms for generating orthogonal polygons with a given number of vertices

    Get PDF
    Programa de Financiamento Plurianual, Fundação para a Ciéncia e TecnologiaPrograma POSIPrograma POCTI, FCTFondo Europeo de Desarrollo Regiona
    corecore