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Abstract. Let G = (S, E) be a plane straight-line graph on a finite
point set S ⊂ R2 in general position. The incident angles of a point
p ∈ S in G are the angles between any two edges of G that appear
consecutively in the circular order of the edges incident to p. A plane
straight-line graph is called ϕ-open if each vertex has an incident angle
of size at least ϕ. In this paper we study the following type of question:
What is the maximum angle ϕ such that for any finite set S ⊂ R2 of
points in general position we can find a graph from a certain class of
graphs on S that is ϕ-open? In particular, we consider the classes of
triangulations, spanning trees, and paths on S and give tight bounds in
most cases.

1 Introduction

Conditions on angles in plane straight-line graphs have been studied extensively
in discrete and computational geometry. It is well known that Delaunay tri-
angulations maximize the minimum angle over all triangulations, and that in a
(Euclidean) minimum weight spanning tree each angle is at least π

3 . In this paper
we address the fundamental combinatorial question, what is the maximum value
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α such that for each finite point set in general position there exists a (certain
type of) plane straight-line graph where each vertex has an incident angle of size
at least α. In other words, we consider min− max− min− max problems, where
we minimize over all finite point sets S in general position in the plane, the
maximum over all plane straight-line graphs G (of the considered type), of the
minimum over all p ∈ S, of the maximum angle incident to p in G. We present
bounds on α for three classes of graphs: spanning paths, (general and bounded
degree) spanning trees, and triangulations. Most of the bounds we give are tight.
In order to show that, we describe families of point sets for which no graph from
the respective class can achieve a greater incident angle at each vertex.

Background. Our motivation for this research stems from the investigation
of “pseudo-triangulations”, a straight-line framework which apart from
deep combinatorial properties has applications in motion planning, collision de-
tection, ray shooting and visibility; see [3,12,13,15,16] and references therein.
Pseudo-triangulations with a minimum number of pseudo-triangles (among all
pseudo-triangulations for a given point set) are called minimum (or pointed)
pseudo-triangulations. They can be characterized as plane straight-line graphs
where each vertex has an incident angle greater than π. Furthermore, the number
of edges in a minimum pseudo-triangulation is maximal, in the sense that the
addition of any edge produces an edge-crossing or negates the angle condition.

In comparison to these properties, we consider connected plane straight-line
graphs where each vertex has an incident angle α—to be maximized—and the
number of edges is minimal (spanning trees) and the vertex degree is bounded
(spanning trees of bounded degree and spanning paths). We further show that
any planar point set has a triangulation in which each vertex has an incident
angle which is at least 2π

3 . Observe that perfect matchings can be described as
plane straight-line graphs where each vertex has an incident angle of 2π and the
number of edges is maximal.

Related Work. There is a vast literature on triangulations that are optimal
according to certain criteria, cf. [2]. Similar to Delaunay triangulations which
maximize the smallest angle over all triangulations for a point set, farthest point
Delaunay triangulations minimize the smallest angle over all triangulations for
a convex polygon [9]. If all angles in a triangulation are ≥ π

6 then it contains
the relative neighborhood graph as a subgraph [14]. The relative neighborhood
graph for a point set connects any pair of points which are mutually closest
to each other (among all points from the set). Edelsbrunner et al. [10] showed
how to construct a triangulation that minimizes the maximum angle among all
triangulations for a set of n points in O(n2 log n) time.

In applications where small angles have to be avoided by all means, a De-
launay triangulation may not be sufficient in spite of its optimality because
even there arbitrarily small angles can occur. By adding so-called Steiner points
one can construct a triangulation on a superset of the original points in which
there is some absolute lower bound on the size of the smallest angle [7]. Dai et al.
[8] describe several heuristics to construct minimum weight triangulations



460 O. Aichholzer et al.

(triangulations which minimize the total sum of edge lengths) subject to ab-
solute lower or upper bounds on the occurring angles.

Spanning cycles with angle constraints can be regarded as a variation of the
traveling salesman problem. Fekete and Woeginger [11] showed that if the cycle
may cross itself then any set of at least five points admits a locally convex
tour, that is, a tour in which the angle between any three consecutive points is
positive. Arkin et al. [5] consider as a measure for (non-)convexity of a point
set S the minimum number of (interior) reflex angles (angles > π) among all
plane spanning cycles for S. Aggarwal et al. [4] prove that finding a spanning
cycle for a point set which has minimal total angle cost is NP-hard, where the
angle cost is defined as the sum of direction changes at the points. Regarding
spanning paths, it has been conjectured that each planar point set admits a
spanning path with minimum angle at least π

6 [11]; recently, a lower bound of π
9

has been presented [6].

Definitions and Notation. Let S ⊂ R2 be a finite set of points in general
position, that is, no three points of S are collinear. In this paper we consider
plane straight-line graphs G = (S, E) on S. The vertices of G are the points in
S, the edges of G are straight-line segments that connect two points in S, and
two edges of G do not intersect except possibly at their endpoints. The incident
angles of a point p ∈ S in G are the angles between any two edges of G that
appear consecutively in the circular order of the edges incident to p. We denote
the maximum incident angle of p in G with opG(p). For a point p ∈ S of degree
at most one we set opG(p) = 2π. We also refer to opG(p) as the openness of p
in G and call p ∈ S ϕ-open in G for some angle ϕ if opG(p) ≥ ϕ. Consider for
example the graph depicted in Fig. 1. The point p has four incident edges of G
and, therefore, four incident angles. Its openness is opG(p) = α. The point q has
only one incident angle and correspondingly opG(q) = 2π.

Similarly we define the openness of a plane straight-line graph G = (S, E)
as op(G) = minp∈S opG(p) and call G ϕ-open for some angle ϕ if op(G) ≥ ϕ.
In other words, a graph is ϕ-open if and only if every vertex has an incident
angle of size at least ϕ. The openness of a class G of graphs is the supremum
over all angles ϕ such that for every finite point set S ⊂ R2 in general position
there exists a ϕ-open connected plane straight-line graph G on S and G is
an embedding of some graph from G. For example, the openness of minimum
pseudo-triangulations is π.

Observe that without the general position assumption many of the questions
become trivial because for a set of collinear points the non-crossing spanning tree
is unique—the path that connects them along the line—and its interior points
have no incident angle greater than π.

The convex hull of a point set S is denoted with CH(S). Points of S on
CH(S) are called vertices of CH(S). Let a, b, and c be three points in the plane
that are not collinear. With ∠abc we denote the counterclockwise angle between
the segment (b, a) and the segment (b, c) at b.

Results. In this paper we study the openness of several well-known classes
of plane straight-line graphs, such as triangulations (Section 2), (general and
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Table 1. Openness of several classes of plane straight-line graphs. All given values
except for paths on point sets in general position are tight.

Triangulations Trees Trees with maxdeg. 3 Paths (convex sets) Paths (general)
2π
3

5π
3

3π
2

3π
2

5π
4

bounded degree) trees (Section 3), and paths (Section 4). The results are sum-
marized in Table 1 above.

2 Triangulations

Theorem 1. Every finite point set in general position in the plane has a trian-
gulation that is 2π

3 -open and this is the best possible bound.

Proof. Consider a point set S ⊂ R2 in general position. Clearly, opG(p) > π for
every point p ∈ CH(S) and every plane straight-line graph G on S. We recur-
sively construct a 2π

3 -open triangulation T of S by first triangulating CH(S);
every recursive subproblem consists of a point set with a triangular convex hull.

Let S be a point set with a triangular convex hull and denote the three
points of CH(S) with a, b, and c. If S has no interior points, then we are done.
Otherwise, let a′, b′ and c′ be (not necessarily distinct) interior points of S such
that the triangles Δa′bc, Δab′c and Δabc′ are empty (see Fig. 2). Since the sum
of the six exterior angles of the hexagon ba′cb′ac′ equals 8π, the sum of the three
angels ∠ac′b, ∠ba′c, and ∠cb′a is at least 2π. In particular, one of them, say
∠cb′a, is at least 2π

3 . We then recurse on the two subsets of S that have Δb′bc
and Δb′ab as their respective convex hulls.

The upper bound is attained by a set S of n points as depicted in Fig. 3.
S consists of a point p and of three sets Sa, Sb, and Sc that each contain n−1

3
points. Sa, Sb, and Sc are placed at the vertices of an equilateral triangle Δ and
p is placed at the barycenter of Δ. Any triangulation T of S must connect p

p q
α

β
γ

δ

Fig. 1. The inci-
dent angles of p

a b

c

a′
b′

c′

Fig. 2. Constructing a 2π
3 -open

triangulation

Sa Sb

p

Sc

Fig. 3. The openness of
triangulations of this point
set approaches 2π

3
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with at least one point of each of Sa, Sb, and Sc and hence opT (p) approaches
2π
3 arbitrarily close. ��

3 Spanning Trees

In this section we give tight bounds on the ϕ-openness of two basic types of
spanning trees, namely general spanning trees and spanning trees with bounded
vertex degree. Consider a point set S ⊂ R2 in general position and let p and q
be two arbitrary points of S. Assume w.l.o.g. that p has smaller x-coordinate
than q. Let lp and lq denote the lines through p and q that are perpendicular
to the edge (p, q). We define the orthogonal slab of (p, q) to be the open region
bounded by lp and lq.

Observation 1. Assume that r ∈ S \ {p, q} lies in the orthogonal slab of (p, q)
and above (p, q). Then ∠qpr ≤ π

2 and ∠rqp ≤ π
2 . A symmetric observation holds

if r lies below (p, q).

Recall that the diameter of a point set is the distance between a pair of points
that are furthest away from each other. Let a and b define the diameter of S and
assume w.l.o.g. that a has a smaller x-coordinate than b. Clearly, all points in
S \ {a, b} lie in the orthogonal slab of (a, b).

Observation 2. Assume that r ∈ S \ {a, b} lies above a diametrical segment
(a, b) for S. Then ∠arb ≥ π

3 and hence at least one of the angles ∠bar and ∠rba
is at most π

3 . A symmetric observation holds if r lies below (a, b).

3.1 General Spanning Trees

Theorem 2. Every finite point set in general position in the plane has a span-
ning tree that is 5π

3 -open and this is the best possible bound.

The upper bound is attained by the point set depicted in Fig. 6. Each of the sets
Si, i ∈ 1, 2, 3 consists of n

3 points. If a point p ∈ S1 is connected to any other
point from S1 ∪ S2, then it can only be connected to a point of S3 forming an
angle of at least π

3 − ε. As the same argument holds for S2 and S3, respectively,
any connected graph, and thus any spanning tree on S is at most 5π

3 -open.
The proof for the lower bound strongly relies on Observation 2 and can be

found in the full paper.

3.2 Spanning Trees of Bounded Vertex Degree

Theorem 3. Let S ⊂ R2 be a set of n points in general position. There exists
a 3π

2 -open spanning tree T of S such that every point from S has vertex degree
at most three in T . The angle bound is best possible, even for the much broader
class of spanning trees of vertex degree at most n − 2.
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c

d

a ba b

S+
c

S−
c

Sa

Sb

Sd

Fig. 4. Constructing a 3π
2 -open spanning tree with maximum vertex degree four

Proof. We show in fact that S has a 3π
2 -open spanning tree with maximum vertex

degree three. To do so, we first describe a recursive construction that results in
a 3π

2 -open spanning tree with maximum vertex degree four. We then refine our
construction to yield a spanning tree of maximum vertex degree three.

Let a and b define the diameter of S. W.l.o.g. a has a smaller x-coordinate than
b. The edge (a, b) partitions S \ {a, b} into two (possibly empty) subsets: the set
Sa of the points above (a, b) and the set Sb of the points below (a, b). We assign
Sa to a and Sb to b (see Fig 4). Since all points of S \ {a, b} lie in the orthogonal
slab of (a, b) we can connect any point p ∈ Sa to a and any point of q ∈ Sb to b
and by this obtain a 3π

2 -open path P = 〈p, a, b, q〉. Based on this observation we
recursively construct a spanning tree of vertex degree at most four.

If Sa is empty, then we proceed with Sb. If Sa contains only one point p then we
connect p to a. Otherwise consider a diametrical segment (c, d) for Sa. W.l.o.g.
d has a smaller x-coordinate than c and d lies above (a, c). Either ∠adc or ∠dca
must be less than π

2 . W.l.o.g. assume that ∠dca < π
2 . Hence we can connect d via

c to a and obtain a 3π
2 -open path P = 〈d, c, a, b〉. The edge (d, c) partitions Sa

into two (possibly empty) subsets: the set Sd of the points above (d, c) and the
set Sc of the points below (d, c). The set Sc is again partitioned by the edge (a, c)
into a set S+

c of points that lie above (a, c) and a set S−
c of points that lie below

(a, c). We assign Sd to d and both S+
c and S−

c to c and proceed recursively.
The algorithm maintains the following two invariants: (i) at most two sets are

assigned to any point of S, and (ii) if a set Sp is assigned to a point p then p
can be connected to any point of Sp and opT (p) ≥ 3π

2 for any resulting tree T .

c

d

a b

p

q

c

d

a b

p

q
S+

c ∪ S−
c

Fig. 5. Constructing a 3π
2 -open spanning tree with maximum vertex degree three
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We now refine our construction to obtain a 3π
2 -open spanning tree of maxi-

mum vertex degree three. If S+
c is empty then we assign S−

c to c, and vice versa.
Otherwise, consider the tangents from a to Sc and denote the points of tangency
with p and q (see Fig. 5). Let lp and lq denote the lines through p and q that
are perpendicular to (a, c). W.l.o.g. lq is closer to a than lp. We replace the edge
(a, c) by the three edges (a, p), (p, q), and (q, c). The resulting path is 3π

2 -open
and partitions Sc into three sets which can be assigned to p, q, and c while
maintaining invariant (ii). The refined recursive construction assigns at most
one set to every point of S and hence constructs a 3π

2 -open spanning tree with
maximum vertex degree three.

The upper bound is attained by the set S of n points depicted in Fig. 7.
S consists of n − 1 near-collinear points close together and one point p far away.
In order to construct any connected graph with maximum degree at most n− 2,
one point of S1 has to be connected to another point of S1 and to p. Thus any
spanning tree on S with maximum degree at most n − 2 is at most 3π

2 -open. ��

S3

S1

S2

Fig. 6. Every spanning
tree is at most 5π

3 -open

p

S1

Fig. 7. Every spanning tree
with vertex degree at most
n − 2 is at most 3π

2 -open

Fig. 8. A zigzag path

4 Spanning Paths

Spanning paths can be regarded as spanning trees with maximum vertex degree
two. Therefore, the upper bound construction from Fig. 7 applies to paths as
well. We will show below that the resulting bound of 3π

2 is tight for points in
convex position, even in a very strong sense: There exists a 3π

2 -open spanning
path starting from any point.

4.1 Point Sets in Convex Position

Consider a set S ⊂ R2 of n points in convex position. We can construct a
spanning path for S by starting at an arbitrary point p ∈ S and recursively
taking one of the tangents from p to CH(S \ {p}). As long as |S| > 2, there
are two tangents from p to CH(S \ {p}): the left tangent is the oriented line t�
through p and a point p� ∈ S \ {p} (oriented in direction from p to p�) such that
no point from S is to the left of t�. Similarly, the right tangent is the oriented
line tr through p and a point pr ∈ S \ {p} (oriented in direction from p to pr)
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such that no point from S is to the right of tr. If we take the left and the right
tangent alternately, see Fig. 8, we call the resulting path a zigzag path for S.

Theorem 4. Every finite point set in convex position in the plane admits a
spanning path that is 3π

2 -open and this is the best possible bound.

Proof. As a zigzag path is completely determined by one of its endpoints and
the direction of the incident edge, there are exactly n zigzag paths for S. (Count
directed zigzag paths: There are n choices for the startpoint and two possible di-
rections to continue in each case, that is, 2n directed zigzag paths and, therefore,
n (undirected) zigzag paths.)

Now consider a point p ∈ S and sort all other points of S radially around p,
starting with one of the neighbors of p along CH(S). Any angle that occurs at p
in some zigzag path for S is spanned by two points that are consecutive in this
radial order. Moreover, any such angle occurs in exactly one zigzag path because
it determines the zigzag path completely. Since the sum of all these angles at p
is less than π, for each point p at most one angle can be ≥ π

2 . Furthermore, if p
is an endpoint of a diametrical segment for S then all angles at p are < π

2 . Since
there is at least one diametrical segment for S, there are at most n − 2 angles
> π

2 in all zigzag paths together. Thus, there exist at least two spanning zigzag
paths that have no angle > π

2 , that is, they are 3π
2 -open.

To see that the bound of 3π
2 is tight, consider again the point set shown in

Fig. 7. ��

A constructive proof for Theorem 4 is given in the full paper. There we also
prove the following stronger statement.

Corollary 1. For any finite set S ⊂ R2 of points in convex position and any
p ∈ S there exists a 3π

2 -open spanning path for S which has p as an endpoint.

4.2 General Point Sets

The main result of this section is the following theorem about spanning paths
of general point sets.

Theorem 5. Every finite point set in general position in the plane has a 5π
4 -open

spanning path.

Let S ⊂ R2 be a set of n points in general position. For a suitable labeling of
the points of S we denote a spanning path for (a subset of k points of) S with
〈p1, . . . , pk〉, where we call p1 the starting point of the path. Then Theorem 5 is
a direct consequence of the following, stronger result.

Theorem 6. Let S be a finite point set in general position in the plane. Then

(1) For every vertex q of the convex hull of S, there exists a 5π
4 -open spanning

path 〈q, p1, . . . , pk〉 on S starting at q.
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(2) For every edge q1q2 of the convex hull of S there exists a 5π
4 -open spanning

path starting at either q1 or q2 and using the edge q1q2, that is, a spanning
path 〈q1, q2, p1, . . . , pk〉 or 〈q2, q1, p1, . . . , pk〉.

Proof. For each vertex p in a path G the maximum incident angle opG(p) is the
larger of the two incident angles (except for start- and endpoint of the path).
To simplify the case analysis we will consider the smaller angle at each point
and prove that we can construct a spanning path such that it is at most 3π

4 .
We denote with (q, S) a spanning path for S starting at q, and with (q1q2, S)
a spanning path for S starting with the edge connecting q1 and q2. The outer
normal cone of a vertex y of a convex polygon is the region between two half-
lines that start at y, are respectively perpendicular to the two edges incident at
y, and are both in the exterior of the polygon.

We prove the statements (1) and (2) of Theorem 6 by induction on |S|. The
base cases |S| = 3 are obviously true.

Induction for (1): Let K = CH(S \ {q}).

Case 1.1. q lies between the outer normal cones of two consecutive vertices y
and z of K, where z lies to the right of the ray −⇀qy.

Induction on (yz, S\{q}) results in a 5π
4 -open spanning path 〈y, z, p1, . . . , pk〉

or 〈z, y, p1, . . . , pk〉 of S \ {q}. Obviously ∠qyz ≤ π
2 < 3π

4 and ∠yzq ≤
π
2 < 3π

4 , and thus we get a 5π
4 -open spanning path 〈q, y, z, p1, . . . , pk〉 or

〈q, z, y, p1, . . . , pk〉 for S (see Fig. 9).
Case 1.2. q lies in the outer normal cone of a vertex of K.

Let p be that vertex and let y and z be the two vertices of K adjacent to p,
z being to the right of the ray −⇀py. The three angles ∠qpz, ∠zpy and ∠ypq
around p obviously add up to 2π. We consider subcases according to which of
the three angles is the smallest, the cases of ∠qpz and ∠ypq being symmetric
(see Fig. 10).

Case 1.2.1. ∠zpy is the smallest of the three angles.
Then, in particular, ∠zpy < 3π

4 . Assume without loss of generality that ∠qpz
is smaller than ∠ypq and, in particular, that it is smaller than π. Since q is
in the normal cone of p, ∠qpz is at least π

2 , hence ∠pzq is at most π
2 < 3π

4 .
Let S′ = S \ {q, z} and consider the path that starts with q and z followed
by (p, S′), that is 〈q, z, p, p1, . . . , pk〉. Note that ∠zpp1 ≤ ∠zpy.

Case 1.2.2. ∠ypq is the smallest of the three angles.

y

z

q

Fig. 9. Case 1.1

y

z

q
p

Fig. 10. Case 1.2

T

c

q1

q2

l1

l2

b

α

ω

Fig. 11. Case 2
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q1

q2

c
z

l2

l1

b

y

p

Fig. 12. Case 2.2.1

α1

α2

α
γ1

γ2
γ

β2

β

δ

ε η

q1

q2

p

z

y
b

c
ω

Fig. 13. Case 2.2.1.[1,2]

q1

q2

c
z

l2

l1

b

y

Fig. 14. Case 2.2.2

Then ∠ypq < 3π
4 . Moreover, in this case all three angles ∠qpz, ∠ypq and

∠zpy are at least π
2 , the first two because q lies in the normal cone of p, the

latter because it is is not the smallest of the three angles. We have ∠qyp < π
2

because this angle lies in the triangle containing ∠ypq ≥ π
2 , and ∠ypq < 3π

4
by assumption. We iterate on (py, S \ {q}) and get a 5π

4 -open spanning path
on S \ {q} by induction, which can be extended to a 5π

4 -open spanning path
on S, 〈q, p, y, p1, . . . , pk〉 or 〈q, y, p, p1, . . . , pk〉, respectively.

Induction for (2): Let b and c be the neighboring vertices of q1 and q2 on
CH(S), such that CH(S) reads . . . , b, q1, q2, c, . . . in ccw order (see Fig. 11).

Case 2.1. α < 3π
4 or ω < 3π

4 (see Fig. 11).
Without loss of generality assume that α < 3π

4 . By induction on (q1, S\{q2})
we get a 5π

4 -open spanning path 〈q1, p1, . . . , pk〉 on S \ {q2}. As ∠q2q1p1 ≤
α < 3π

4 we get a 5π
4 -open spanning path 〈q2, q1, p1, . . . , pk〉 on S.

Case 2.2. Both α and ω are at least 3π
4 .

Let l1 and l2 be the lines through q1 and q2, respectively, and orthogonal
to q1q2. Further let K = CH(S \ {q1, q2}) and with T we denote the region
bounded by q1q2, l1, l2 and the part of K closer to q1q2 (see Fig. 11).

Case 2.2.1. At least one vertex p of K exists in T.
If there exist several vertices of K in T , then we choose p as the one with
smallest distance to q1q2 (see Fig. 12). Obviously the edges q1p and q2p
intersect K only in p and the angles α1 and β are each at most π

2 (see
Fig. 13).

Case 2.2.1.1. γ2 > π
2 (see Fig.13).

By induction on (p, S\{q1, q2}) we get a 5π
4 -open spanning path 〈p, p1, . . . , pk〉

for S\{q1, q2}. Moreover the smaller of ∠q2pp1 and ∠p1pq1 is at most 2π−π
2

2 =
3π
4 . Thus we get a 5π

4 -open spanning path 〈q1, q2, p, p1, . . . , pk〉 or 〈q2, q1, p,
p1, . . . , pk〉 for S.

Case 2.2.1.2. γ2 ≤ π
2 (see Fig.13).

Let y and z be vertices of K, with y being the clock-wise neighbor of p and z
being the counterclockwise one (b might equal y and c might equal z). At least
one of α1 or β is ≥ π

4 . Without loss of generality assume that β ≥ π
4 , the other

case is symmetric. Then q1, q2, p, y form a convex four-gon because α ≥ 3π
4 and
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β ≥ π
4 imply that ∠bpq2 in the four-gon b, q1, q2, p is less than π. Therefore also

γ ≤ ∠bpq2 < π. We will show that all four angles α1, γ1, β2 and δ are at most
3π
4 . Then we apply induction on (py, S \ {q1, q2}) and get a 5π

4 -open spanning
path on S \ {q1, q2}, which can be completed to a 5π

4 -open spanning path for
S, 〈q2, q1, p, y, p1, . . . , pk〉 or 〈q1, q2, y, p, p1, . . . , pk〉, respectively.
– Both α1 and β2 < β are clearly smaller than π

2 , hence smaller than 3π
4 .

– For γ1, observe that the supporting line of yp must cross the segment
q1b, so that we have α2 + γ1 < π (they are two angles of a triangle).
Also, α2 = α − α1 ≥ 3π

4 − π
2 = π

4 , so γ1 < 3π
4 .

– Analogously, for δ, observe that the supporting line of yp must cross the
segment q2c, so that we have ω−β2 +δ < π. Also ω−β2 ≥ π

4 , so δ < 3π
4 .

Case 2.2.2. No vertex of K exists in T .
Both, l1 and l2, intersect the same edge yz of K (in T ), with y closer to l1
than to l2 (see Fig. 14). We will show that the four angles ∠yzq1, ∠q2q1z,
∠yq2q1 and ∠q2yz are all smaller than 3π

4 . Then induction on (yz, S\{q1, q2})
yields a path that can be extended to a 5π

4 -open path 〈q2, q1, z, y, p1, . . . , pk〉
or 〈q1, q2, y, z, p1, . . . , pk〉. Clearly, the angles ∠q2q1z and ∠yq2q1 are both
smaller than π

2 . The sum of ∠q2yz + ∠cq2y is smaller than π because the
supporting line of yz intersects the segment q2c. Now, ∠cq2y is at least π

4 by
the assumption that ∠cq2q1 ≥ 3π

4 . So, ∠q2yz < 3π
4 . The symmetric argument

shows that ∠yzq1 < 3π
4 . ��

Note that for Theorem 6 it is essential that the predefined starting point of a
5π
4 -open path is an extreme point of S, as an equivalent result is in general not

true for interior points. As a counter example consider a regular n-gon with
an additional point in its center. It is easy to see that for sufficiently large n
starting at the central point causes a path to be at most π + ε-open for a small
constant ε. Similar, non-symmetric examples already exist for n ≥ 6 points,
and analogously, if we require an interior edge to be part of the path, there
exist examples bounding the openness by 4π

3 +ε [17]. Despite these examples we
conclude this section with the following conjecture.

Conjecture 1. Every finite point set in general position in the plane has a 3π
2 -

open spanning path.
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