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1. Introduction

This work focus on simple polygons without
holes. Therefore, we call them just polygons. More-
over, “polygon” will sometimes mean a polygon
together with its interior. P denotes a polygon and
r the number of its reflex vertices. A polygon is
orthogonal (or rectilinear) if its edges meet at right
angles. O’Rourke [4] has shown that n = 2r + 4
for every n-vertex orthogonal polygon (n-ogon,
for short). Generic n-ogons may be obtained from
a particular kind of n-ogons, that we called grid
orthogonal polygons, as illustrated in Fig. 1.

Fig. 1. Three 12-ogons mapped to the same grid 12-ogon.

Definition 1 An n-ogon P is in general position
iff every horizontal and vertical line contains at

most one edge of P , i.e., iff P has no collinear

edges. We call “grid n-ogon” each n-ogon in general

position defined in a n
2
×

n
2

square grid.

We assume that the grid is defined by hori-
zontal lines y = 1, . . . , y = n

2
and vertical lines

x = 1, . . . , x = n
2

and that its northwest corner has
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coordinates (1,1). Each grid n-ogon has exactly
one edge in every line of the grid.

Each n-ogon not in general position may be
mapped to an n-ogon in general position by
ǫ-perturbations, for a sufficiently small constant
ǫ > 0. Hence, we restrict generation to n-ogons
in general position. Each n-ogon in general posi-
tion is mapped to a unique grid n-ogon through
top-to-bottom and left-to-right sweeping. And,
reciprocally, given a grid n-ogon we may create an
n-ogon that is an instance of its class by randomly
spacing the grid lines in such a way that their
relative order is kept.

1.1. The paper’s contribution

We propose two methods that generate grid
n-ogons in polynomial time – Inflate-Cut and
Inflate-Paste. The former was published in [7],
where we also gave implementation details, show-
ing that it requires linear space in n and runs
in quadratic time in average. Two programs
for generating random orthogonal polygons, by
O’Rourke (developed for the evaluation of [5]) and
by Filgueiras 1 are mentioned there. The main
idea of O’Rourke is to construct such a polygon
via growth from a seed cell (i.e., unit square) in
a board, gluing together a given number of cells
that are selected randomly using some heuristics.
Filgueiras’ method shares a similar idea though it
glues rectangles of larger areas and allows them to
overlap. Neither of these methods allows to con-
trol the final number of vertices of the polygon.
A major idea in Inflate-Paste is also to glue

1 personal communication, DCC-LIACC, 2003.
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rectangles. Nevertheless, it restricts the positions
where rectangles may be glued, which renders the
algorithm simpler and provides control on the fi-
nal number of vertices. For the latter purpose, the
Inflate transformation is crucial. It is possible
to implement Inflate-Paste so that it requires
quadratic-time in the worst-case and linear-space.
Our methods may be also adapted to generate
simple orthogonal polygons with holes. Indeed,
each hole is an orthogonal polygon without holes.

2. Inflate, Cut and Paste transformations

Let vi = (xi, yi), for i = 1, . . . , n, be the vertices
of a grid n-ogon P , in CCW order.

Inflate takes a grid n-ogon P and a pair of
integers (p, q) with p, q ∈ [0, n

2
], and yields a new

n-vertex orthogonal polygon P̃ with vertices ṽi =
(x̃i, ỹi) given by x̃i = xi if xi ≤ p and x̃i = xi + 1
if xi > p, and ỹi = yi if yi ≤ q and ỹi = yi + 1 if
yi > q, for i = 1, . . . , n. Thus, it augments the grid,
creating two free lines, x = p + 1 and y = q + 1.

Inflate-Cut: Let C be a unit cell in the interior
of P , with center c and northwest vertex (p, q).
When we apply Inflate to P using (p, q), c is
mapped to c̃ = (p + 1, q + 1), that is the center of
inflated C. The goal of Cut is to introduce c̃ as
reflex vertex of the polygon. To do that, it cuts one
rectangle (defined by c̃ and a vertex ṽm belonging
to one of the four edges shot by the horizontal and
vertical rays that emanate from c̃). We allow such
a rectangle to be cut iff it contains no vertex of P̃

except ṽm. If no rectangle may be cut, we say that
Cut fails for C.

So, suppose that s̃ is the point where one of these
rays first intersects the boundary of P̃ , that ṽm

is one of the two vertices on the edge of P̃ that
contains s̃ and that the rectangle defined by c̃ and
ṽm may be cut. Cut cuts this rectangle from P̃

replacing ṽm by s̃, c̃, s̃′ if this sequence is in CCW
order (or s̃′, c̃, s̃, otherwise), with s̃′ = c̃+(ṽm− s̃).
We may conclude that s̃, c̃, s̃′ is in CCW order iff s̃

belongs to the edge ṽm−1ṽm and in CW order iff it
belongs to ṽmṽm+1. Cut always removes a single
vertex of the grid ogon and introduces three new
ones. Fig. 2 illustrates this technique. Because Cut

never fails if C has an edge that is part of an edge
of P , Inflate-Cut may be always applied to P .

4

Inflate Cell

Cut 1 Cut 2 Cut 3 Cut 4

3

21
C C

Fig. 2. The two rectangles defined by the center of C

and the vertices of the leftmost vertical edge ((1, 1), (1, 7))
cannot be cut. There remain the four possibilities shown.

Inflate-Paste: We first imagine the grid
n-ogon merged in a (n

2
+ 2)× (n

2
+ 2) square grid,

with the top, bottom, leftmost and rightmost grid
lines free. The top line is x = 0 and the leftmost
one y = 0, so that (0, 0) is now the northwest cor-
ner of this extended grid. Let eH(vi) represent the
horizontal edge of P to which vi belongs.
Definition 2 Given a grid n-ogon P merged into

a (n
2

+ 2)× (n
2

+ 2) square grid, and a convex ver-

tex vi of P , the free staircase neighbourhood of vi,

denoted by FSN(vi), is the largest staircase polygon

in this grid that has vi as vertex, does not intersect

the interior of P and its base edge contains eH(vi).
An example is given in Fig. 3.
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Fig. 3. A grid n-ogon merged into a (n

2
+ 2) × (n

2
+ 2)

square grid and the free staircase neighbourhood for each
of its convex vertices, with n = 14.

Now, to transform P by Inflate-Paste we
first take a convex vertex vi of P , select a cell C

in FSN(vi), and apply Inflate to P using the
nortwest corner (p, q) of C. As before, the center
of cell C is mapped to c̃ = (p + 1, q + 1), which
will now be a convex vertex of the new polygon.
Paste glues the rectangle defined by ṽi and c̃

to P̃ , increasing the number of vertices by two. If
eH(vi) ≡ vivi+1 then Paste removes ṽi = (x̃i, ỹi)
and inserts the chain (x̃i, q + 1), c̃, (p +1, ỹi) in its
place. If eH(vi) ≡ vi−1vi, Paste replaces ṽi by the
sequence (p +1, ỹi), c̃, (x̃i, q + 1). Fig. 4 illustrates
this transformation. Clearly, Paste never fails, in
contrast to Cut.
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Fig. 4. The four grid 14-ogons that we may construct if we
apply Inflate-Paste to the given 12-ogon, to extend the
vertical edge that ends in vertex 10.

3. Inflate-Cut and Inflate-Paste Methods

We showed in [7] that every grid n-ogon may be
created from a unit square (i.e., the grid 4-ogon) by
applying r Inflate-Cut transformations. Now,
we may show the same result for Inflate-Paste.
At iteration k, both methods construct a grid
(2k + 4)-ogon from the grid (2(k − 1) + 4)-ogon
obtained in the previous iteration, for 1 ≤ k ≤ r.
The Inflate-Cut method yields a random grid
n-ogon, if cells and rectangles are chosen at ran-
dom. This is also true for Inflate-Paste, though
now for the selections of vi and of C in FSN(vi).
It is not difficult to see that both Inflate-Cut

and Inflate-Paste yield grid ogons. In contrast,
the proof of their completeness is not immediate,
as suggested by the example given in Fig. 5.

Fig. 5. The rightmost polygon is the unique grid 16-ogon
that gives rise to this 18-ogon, if we apply Inflate-Cut.

Before we go through the proof, we need to in-
troduce some definitions and results.
Definition 3 Given a simple orthogonal polygon

P without holes, let ΠH(P ) be the horizontal decom-

position of P into rectangles obtained by extending

the horizontal edges incident to reflex vertices to-

wards the interior of P until they hit its boundary.

Each chord (i.e., edge extension) separates exactly
two adjacent pieces (faces), since it makes an hori-

zontal cut (see e.g. [9]). The dual graph of ΠH(P )
captures the adjacency relation between pieces of
ΠH(P ). Its nodes are the pieces of ΠH(P ) and its
non-oriented edges connect adjacent pieces.
Lemma 4 The dual graph of ΠH(P ) is a tree for

all simple orthogonal polygons P without holes.

PROOF. This result follows from the well-known
Jordan Curve Theorem. Suppose the graph con-
tains a simple cycle F0, F1, . . . , Fd, F0, with d ≥ 2.
Let γ = (γ0,1γ1,2 . . . γd,0) be a simple closed curve
in the interior of P that links the centroids of the
faces F0, F1, . . . , Fd. Denote by v the reflex vertex
that defines the chord v sv that separates F0 from
F1. Here, sv is the point where this edge’s exten-
sion intersects the boundary of P . Either v or sv

would be in the interior of γ, because γ needs to
cross the horizontal line supporting v sv at least
twice and just γ0,1 crosses v sv. But the interior of
γ is contained in the interior of P , and there exist
points in the exterior of P in the neighbourhood of
v and of sv, so that we achieve a contradiction. ✷

It is worth noting that the vertical decomposi-
tion ΠV(P ) of P would have identical properties.
We shall now prove Proposition 5 that asserts the
completeness of Inflate-Paste.
Proposition 5 For each grid (n + 2)-ogon, with

n ≥ 4, there is a grid n-ogon that yields it by

Inflate-Paste.

PROOF. Given a grid (n + 2)-ogon P , we use
Lemma 4 to conclude that the dual graph of ΠH(P )
is a tree. Each leaf of this tree corresponds to a
rectangle that could have been glued by Paste to
yield P . Indeed, suppose that v sv is the chord that
separates a leaf F from the rest of P . Because grid
ogons are in general position, sv is not a vertex of
P . It belongs to the relative interior of an edge of
P . The vertex of rectangle F that is not adjacent
to sv would be c̃ in Inflate-Paste. If we cut F ,
we would obtain an inflated n-ogon, that we may
deflate to get a grid n-ogon that yields P . The
two grid lines y = yc̃ and x = xc̃ are free. Clearly
sv is the vertex we called vi in the description of
Inflate-Paste (more accurately, sv is ṽi) and c =
(xc̃ − 1, yc̃ − 1) ∈ FSN(vi). ✷

For this paper to be self-contained, we recall now
a proof of the completeness of Inflate-Cut, al-
ready sketched in [7]. It was inspired by work about
convexification of simple polygons [2,6,8], in parti-
cular, by a recent paper by O. Aichholzer et al. [1].
It also shares ideas of a proof of Meisters’ Two-

Ears Theorem [3] by O’Rourke, though we were not
aware of this when we wrote it. Fig. 6 illustrates
the fundamental ideas.
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Fig. 6. The two leftmost grids show a grid 18-ogon and its
pockets. The shaded rectangle A is a leaf of the tree associ-
ated to the vertical partitioning of the largest pocket. The
rightmost polygon is an inflated grid 16-ogon that yields
the represented grid 18-ogon, if Cut removes rectangle A.

We need some additional definitions and results.
Definition 6 A pocket of a nonconvex polygon P

is a maximal sequence of edges of P disjoint from

its convex hull except at the endpoints. The lid is

the line segment joining its two endpoints.

Any nonconvex polygon P has at least one
pocket. Each pocket of an n-ogon, together with
its lid, defines a simple polygon without holes,
that is almost orthogonal except for an edge (lid).
It is possible to slightly transform it to obtain an
orthogonal polygon, as illustrated in Fig. 6. We
shall refer to this polygon as an orthogonalized

pocket. For every orthogonalized pocket Q, it is
easy to see that the pocket’s lid is contained in a
single rectangle of either ΠH(Q) or ΠV(Q). Let
Π(Q) represent the one where the lid is contained
in a single piece.
Proposition 7 For each grid (n + 2)-ogon, there

is a grid n-ogon that yields it by Inflate-Cut.

PROOF. Given a grid (n + 2)-ogon P , let Q be
an orthogonalized pocket of P . Necessarily, Q is in
general position. By Lemma 4 the dual graph of
Π(Q) is a tree. We claim that at least one of its
leaves contains or is itself a rectangle that might
have been removed by Cut to yield P . Indeed, the
leaves are of the two following forms.

c
~

~
v
mc

~

~
v
m

The shaded rectangles are the ones that might
have been cut. We have also represented the points
that would be ṽm and c̃ in Inflate-Cut. Here, we
must be careful about the leaf that has the pocket’s
lid. Only if the tree consists of a single node (c.f. the
smallest pocket in Fig. 6), may this leaf be filled.
But, every non-degenerated tree has at least two
leaves. Then, in this case the tree has a leaf other
than the one that contains the lid. ✷

The concept of mouth [8] was crucial to reach the
current formulation of Cut. Actually, Inflate-

Cut is somehow doing the reverse of an algorithm
given by Toussaint in [8] that computes the convex
hull of a polygon globbing-up mouths to succes-
sively remove its concavities. For orthogonal poly-
gons, we would rather define rectangular mouths.
Definition 8 A reflex vertex vi of an ogon P is a

rectangular mouth of P iff the interior of the rect-

angle defined by vi−1 and vi+1 is contained in the

exterior of P and neither this rectangle nor its inte-

rior contain vertices of P , except vi−1, vi and vi+1.

To justify the correction of our technique, we
observe that when we apply Cut to obtain a grid
(n + 2)-ogon, the vertex c̃ is always a rectangular
mouth of the resulting (n + 2)-ogon. In sum, the
proof of Proposition 7 given above justifies Corol-
lary 9, which rephrases the One-Mouth Theorem

by Toussaint.
Corollary 9 Each grid n-ogon has at least one

rectangular mouth, for n ≥ 6.
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