322 research outputs found

    Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements

    Full text link
    We discuss flavor-mixing probabilities and flavor ratios of high energy astrophysical neutrinos. In the first part of this paper, we expand the neutrino flavor-fluxes in terms of the small parameters U_{e3} and pi/4 - theta_{23}, and show that there are universal first and second order corrections. The second order term can exceed the first order term, and so should be included in any analytic study. We also investigate the probabilities and ratios after a further expansion around the tribimaximal value of sin^2 theta_{12} = 1/3. In the second part of the paper, we discuss implications of deviations of initial flavor ratios from the usually assumed, idealized flavor compositions for pion, muon-damped, and neutron beam sources, viz., (1 : 2 : 0), (0 : 1 : 0), and (1 : 0 : 0), respectively. We show that even small deviations have significant consequences for the observed flavor ratios at Earth. If initial flavor deviations are not taken into account in analyses, then false inferences for the values in the PMNS matrix elements (angles and phase) may result.Comment: 32 pages, 15 figures. Minor changes, matches version in JHE

    Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data

    Get PDF
    We present a reanalysis of nonstandard neutrino-down-quark interactions of electron and tau neutrinos using solar, reactor and accelerator data. In addition updating the analysis by including new solar data from SNO phase III and Borexino, as well as new KamLAND data and solar fluxes, a key role is played in our analysis by the combination of these results with the CHARM data. The latter allows us to better constrain the axial and axial-vector electron and tau-neutrino nonstandard interaction parameters characterizing the deviations from the Standard Model predictions.Comment: 11 pages, 6 figures, 2 tables, typo corrected in Figure 2, version published in Phys. Rev.

    Testing whether muon neutrino flavor mixing is maximal

    Full text link
    The small difference between the survival probabilities of muon neutrino and antineutrino beams, traveling through earth matter in a long baseline experiment such as MINOS, is shown to be an important measure of any possible deviation from maximality in the flavor mixing of those states.Comment: Some revision has been made in the experimental discussions with two new figures replacing the old ones and a clarification of the accuracy of the perturbative result has been included. This version will be published in Physical Review Letters. Title changed as asked by the editors of Physical Review Letter

    Physics Reach of High-Energy and High-Statistics IceCube Atmospheric Neutrino Data

    Get PDF
    This paper investigates the physics reach of the IceCube neutrino detector when it will have collected a data set of order one million atmospheric neutrinos with energies in the 0.1 \sim 10^4 TeV range. The paper consists of three parts. We first demonstrate how to simulate the detector performance using relatively simple analytic methods. Because of the high energies of the neutrinos, their oscillations, propagation in the Earth and regeneration due to \tau decay must be treated in a coherent way. We set up the formalism to do this and discuss the implications. In a final section we apply the methods developed to evaluate the potential of IceCube to study new physics beyond neutrino oscillations. Not surprisingly, because of the increased energy and statistics over present experiments, existing bounds on violations of the equivalence principle and of Lorentz invariance can be improved by over two orders of magnitude. The methods developed can be readily applied to other non-conventional physics associated with neutrinos.Comment: 21 pages, 7 figures, Revtex

    Probing nonstandard neutrino-electron interactions with solar and reactor neutrinos

    Get PDF
    Most neutrino mass extensions of the standard electroweak model entail non-standard interactions which, in the low energy limit, can be parametrized in term of effective four-fermion operators νανβf¯f. Typically of sub-weak strength, ϵαβGF, these are characterized by dimensionless coupling parameters, ϵαβ, which may be relatively sizeable in a wide class of schemes. Here we focus on non-universal (NU) flavor conserving couplings (α=β) with electrons (f=e) and analyse their impact on the phenomenology of solar neutrinos. We consistently take into account their effect both at the level of propagation where they modify the standard MSW behavior, and at the level of detection, where they affect the cross section of neutrino elastic scattering on electrons. We find limits which are comparable to other existing model-independent constraints

    Universal Seesaw Mass Matrix Model with an S_3 Symmetry

    Get PDF
    Stimulated by the phenomenological success of the universal seesaw mass matrix model, where the mass terms for quarks and leptons f_i (i=1,2,3) and hypothetical super-heavy fermions F_i are given by \bar{f}_L m_L F_R +\bar{F}_L m_R f_R + \bar{F}_L M_F F_R + h.c. and the form of M_F is democratic on the bases on which m_L and m_R are diagonal, the following model is discussed: The mass terms M_F are invariant under the permutation symmetry S_3, and the mass terms m_L and m_R are generated by breaking the S_3 symmetry spontaneously. The model leads to an interesting relation for the charged lepton masses.Comment: 8 pages + 1 table, latex, no figures, references adde

    Supersymmetric Origin of Neutrino Mass

    Get PDF
    Supersymmetry with breaking of R-parity provides an attractive way to generate neutrino masses and lepton mixing angles in accordance to present neutrino data. We review the main theoretical features of the bilinear R-parity breaking (BRpV) model, and stress that it is the simplest extension of the minimal supersymmetric standard model (MSSM) which includes lepton number violation. We describe how it leads to a successful phenomenological model with hierarchical neutrino masses. In contrast to seesaw models, the BRpV model can be probed at future collider experiments, like the Large Hadron Collider or the Next Linear Collider, since the decay pattern of the lightest supersymmetric particle provides a direct connection with the lepton mixing angles determined by neutrino experiments.Comment: 21 pages, 8 figures, review for NJP focus issue on neutrino

    GEMMA experiment: three years of the search for the neutrino magnetic moment

    Full text link
    The result of the 3-year neutrino magnetic moment measurement at the Kalinin Nuclear Power Plant with the GEMMA spectrometer is presented. Antineutrino-electron scattering is investigated. A high-purity germanium detector of 1.5 kg placed at a distance of 13.9 m from the 3 GW(th) reactor core is used in the spectrometer. The antineutrino flux is 2.7E13 1/scm/s. The differential method is used to extract (nu-e) electromagnetic scattering events. The scattered electron spectra taken in 5184+6798 and 1853+1021 hours for the reactor ON and OFF periods are compared. The upper limit for the neutrino magnetic moment < 3.2E-11 Bohr magneton at 90% CL is derived from the data processing.Comment: 4 pages, 4 figure

    Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects

    Full text link
    We discuss the importance of flavor ratio measurements in neutrino telescopes, such as by measuring the ratio between muon tracks to cascades, for the purpose of extracting new physics signals encountered by astrophysical neutrinos during propagation from the source to the detector. The detected flavor ratios not only carry the energy information of specific new physics scenarios which alter the transition probabilities in distinctive ways, but also the energy dependent flavor composition at the source. In the present work, we discuss the interplay of these two energy dependent effects and identify which new physics scenarios can be distinguished from the detected flavor ratios as a function of astrophysical parameters. We use a recently developed self-consistent neutrino production model as our toy model to generate energy dependent source flavor ratios and discuss (invisible) neutrino decay and quantum decoherence as specific new physics examples. Furthermore, we identify potentially interesting classes of sources on the Hillas plot for the purpose of new physics searches. We find that sources with substantial magnetic fields 10^3 Gauss <= B <= 10^6 Gauss, such as Active Galactic Nuclei (AGN) cores, white dwarfs, or maybe gamma-ray bursts, have, in principle, the best discrimination power for the considered new physics scenarios, whereas AGN jets, which typically perform as pion beam sources, can only discriminate few sub cases in the new physics effects. The optimal parameter region somewhat depends on the class of new physics effect considered.Comment: 34 pages, 10 figures, 1 table. Discussion on statistics added, minor clarifications. Final version published in JCA

    Are solar neutrino oscillations robust?

    Get PDF
    The robustness of the large mixing angle (LMA) oscillation (OSC) interpretation of the solar neutrino data is considered in a more general framework where non-standard neutrino interactions (NSI) are present. Such interactions may be regarded as a generic feature of models of neutrino mass. The 766.3 ton-yr data sample of the KamLAND collaboration are included in the analysis, paying attention to the background from the reaction ^13C(\alpha,n) ^16O. Similarly, the latest solar neutrino fluxes from the SNO collaboration are included. In addition to the solution which holds in the absence of NSI (LMA-I) there is a 'dark-side' solution (LMA-D) with sin^2 theta_Sol = 0.70, essentially degenerate with the former, and another light-side solution (LMA-0) allowed only at 97% CL. More precise KamLAND reactor measurements will not resolve the ambiguity in the determination of the solar neutrino mixing angle theta_Sol, as they are expected to constrain mainly Delta m^2. We comment on the complementary role of atmospheric, laboratory (e.g. CHARM) and future solar neutrino experiments in lifting the degeneracy between the LMA-I and LMA-D solutions. In particular, we show how the LMA-D solution induced by the simplest NSI between neutrinos and down-type-quarks-only is in conflict with the combination of current atmospheric data and data of the CHARM experiment. We also mention that establishing the issue of robustness of the oscillation picture in the most general case will require further experiments, such as those involving low energy solar neutrinos.Comment: 13 pages, 6 figures; Final version to appear in JHE
    corecore