This paper investigates the physics reach of the IceCube neutrino detector
when it will have collected a data set of order one million atmospheric
neutrinos with energies in the 0.1 \sim 10^4 TeV range. The paper consists of
three parts. We first demonstrate how to simulate the detector performance
using relatively simple analytic methods. Because of the high energies of the
neutrinos, their oscillations, propagation in the Earth and regeneration due to
\tau decay must be treated in a coherent way. We set up the formalism to do
this and discuss the implications. In a final section we apply the methods
developed to evaluate the potential of IceCube to study new physics beyond
neutrino oscillations. Not surprisingly, because of the increased energy and
statistics over present experiments, existing bounds on violations of the
equivalence principle and of Lorentz invariance can be improved by over two
orders of magnitude. The methods developed can be readily applied to other
non-conventional physics associated with neutrinos.Comment: 21 pages, 7 figures, Revtex