209 research outputs found

    Exploring the virtual space of academia

    Get PDF
    The aim of this chapter is to provide a view on how researchers present themselves in a social network specifically developed for supporting academic practices, how they share information and engage in dialogues with colleagues worldwide. We analysed data from 30,428 users who have registered on a publicly available website to study the effect of academic position, university ranking and country on people's behaviour. Results suggest that the virtual network closely mirrors physical reality, reproducing the same hierarchical structure imposed by position, ranking, and country on user behaviour. Despite the potential for bridging and bonding social capital the networks have not achieved substantial changes in structures and practices of the academic context. Furthermore, our analysis highlights the need of finding new strategies to motivate the users to contribute to the community and support equal participation, as so far the community is mainly exploited as a static website

    Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants

    Get PDF
    Ammonia recovery from urine avoids the need for nitrogen removal through nitrification/denitrification and re-synthesis of ammonia (NH3) via the Haber-Bosch process. Previously, we coupled an alkalifying electrochemical cell to a stripping column, and achieved competitive nitrogen removal and energy efficiencies using only electricity as input, compared to other technologies such as conventional column stripping with air. Direct liquid-liquid extraction with a hydrophobic gas membrane could be an alternative to increase nitrogen recovery from urine into the absorbent while minimizing energy requirements, as well as ensuring microbial and micropollutant retention. Here we compared a column with a membrane stripping reactor, each coupled to an electrochemical cell, fed with source-separated urine and operated at 20 A m−2. Both systems achieved similar nitrogen removal rates, 0.34 ± 0.21 and 0.35 ± 0.08 mol N L−1 d−1, and removal efficiencies, 45.1 ± 18.4 and 49.0 ± 9.3%, for the column and membrane reactor, respectively. The membrane reactor improved nitrogen recovery to 0.27 ± 0.09 mol N L−1 d−1 (38.7 ± 13.5%) while lowering the operational (electrochemical and pumping) energy to 6.5 kWhe kg N−1 recovered, compared to the column reactor, which reached 0.15 ± 0.06 mol N L−1 d−1 (17.2 ± 8.1%) at 13.8 kWhe kg N−1. Increased cell concentrations of an autofluorescent E. coli MG1655 + prpsM spiked in the urine influent were observed in the absorbent of the column stripping reactor after 24 h, but not for the membrane stripping reactor. None of six selected micropollutants spiked in the urine were found in the absorbent of both technologies. Overall, the membrane stripping reactor is preferred as it improved nitrogen recovery with less energy input and generated an E. coli- and micropollutant-free product for potential safe reuse. Nitrogen removal rate and efficiency can be further optimized by increasing the NH3 vapor pressure gradient and/or membrane surface area

    Connecting wastes to resources for clean technologies in the chlor-alkali industry: a life cycle approach

    Get PDF
    Our current economic model is experiencing increasing demand and increasing pressure on resource utilisation, as valuable materials are lost as waste. Moving towards a circular economy and supporting efficient resource utilisation is essential for protecting the environment. The chlor-alkali industry is one of the largest consumers of salt, and efforts have been made to reduce its electricity use. Furthermore, KCl mining wastes have received increasing attention because they can be transformed into value-added resources. This work studies the influence of using different salt sources on the environmental sustainability of the chlor-alkali industry to identify further improvement opportunities. Rock salt, solar salt, KCl waste salt, vacuum salt and solution-mined salt were studied. Membrane cells in both bipolar and monopolar configurations were studied and compared to the emergent oxygen-depolarised cathode (ODC) technology. Life cycle assessment was applied to estimate the cradle-to-gate environmental impacts. The natural resource (NR) requirements and the environmental burdens (EBs) to the air and water environments were assessed. The total NR and EB requirements were reduced by 20% when vacuum salt was replaced with KCl. Moreover, the environmental impacts estimated for the monopolar membrane using KCl were comparable to those generated for the bipolar membrane using VS. The difference between the monopolar and bipolar scenarios (17%) was slightly higher than that between the bipolar and ODC technologies (12%). This work demonstrates the importance of studying every life cycle stage in a chemical process and the environmental benefit of applying a circular economy, even in energy intensive industries such as the chlor-alkali industry.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), Project CTM2013-43539-R. The authors are grateful for this funding

    Understanding sporting social media brand communities, place and social capital – a netnography of football fans

    Get PDF
    The emergence of social media and digital channels have expanded communication practices and also created new, virtual spaces where sports fans can interact and communicate directly with each other and with clubs. This article examines the potential for social media brand communities to develop a sense of both community and place amongst sports fans. It explores their influence in placemaking initiatives through the bonding and bridging social capital of a football club’s supporters. A netnographic study of a football club’s supporter networks (five channels) and their interactions with social media brand communities was performed. Data gathered from online sources was underpinned by interviews with 25 members of the community. Findings were analysed via NVivo using bridging and bonding social capital as a theoretical lens. The paper makes two primary contributions to knowledge. It enhances our understanding of the impact of SMBCs and their use in a sporting context – an area that has become increasingly significant during the COVID-19 pandemic enforced lockdowns that have kept fans out of venues and contributes to our understanding of the influence of placemaking strategies upon the social capital of supporter communities

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments
    • …
    corecore