1,690 research outputs found

    Magnetic and orbital ordering in cuprates and manganites

    Full text link
    The mechanisms of magnetic and orbital interactions due to double exchange (DE) and superexchange (SE) in transition metal oxides with degenerate e_g orbitals are presented. Specifically, we study the effective spin-orbital models derived for the d^9 ions as in KCuF_3, and for the d^4 ions as in LaMnO_3, for spins S=1/2 and S=2, respectively. Such models are characterized by three types of elementary excitations: spin waves, orbital waves, and spin-and-orbital waves. The SE interactions between Cu^{2+} (d^9) ions are inherently frustrated, which leads to a new mechanism of spin liquid which operates in three dimensions. The SE between Mn^{3+} (d^4) ions explains the A-type antiferromagnetic order in LaMnO_3 which coexists with the orbital order. In contrast, the ferromagnetic metallic phase and isotropic spin waves observed in doped manganites are explained by DE for degenerate e_g orbitals. It is shown that although a hole does not couple to spin excitations in ferromagnetic planes of LaMnO_3, the orbital excitations change the energy scale for the coherent hole propagation and cause a large redistribution of spectral weight. Finally, we point out some open problems in the present understanding of doped manganites.Comment: 155 pages, 66 figure

    The boson-fermion model: An exact diagonalization study

    Full text link
    The main features of a generic boson-fermion scenario for electron pairing in a many-body correlated fermionic system are: i) a cross-over from a poor metal to an insulator and finally a superconductor as the temperature decreases, ii) the build-up of a finite amplitude of local electron pairing below a certain temperature TT^*, followed by the onset of long-range phase correlations among electron pairs below a second characteristic temperature TϕT_{\phi}, iii) the opening of a pseudogap in the DOS of the electrons below TT^*, rendering these electrons poorer and poorer quasi-particles as the temperature decreases, with the electron transport becoming ensured by electron pairs rather than by individual electrons. A number of these features have been so far obtained on the basis of different many-body techniques, all of which have their built-in shortcomings in the intermediate coupling regime, which is of interest here. In order to substantiate these features, we investigate them on the basis of an exact diagonalization study on rings up to eight sites. Particular emphasis has been put on the possibility of having persistent currents in mesoscopic rings tracking the change-over from single- to two-particle transport as the temperature decreases and the superconducting state is approached.Comment: 7 pages, 8 figures; to be published in Phys. Rev.

    Radio constraints on dark matter annihilation in the galactic halo and its substructures

    Get PDF
    Annihilation of Dark Matter usually produces together with gamma rays comparable amounts of electrons and positrons. The e+e- gyrating in the galactic magnetic field then produce secondary synchrotron radiation which thus provides an indirect mean to constrain the DM signal itself. To this purpose, we calculate the radio emission from the galactic halo as well as from its expected substructures and we then compare it with the measured diffuse radio background. We employ a multi-frequency approach using data in the relevant frequency range 100 MHz-100 GHz, as well as the WMAP Haze data at 23 GHz. The derived constraints are of the order =10^{-24} cm3 s^{-1} for a DM mass m_chi=100 GeV sensibly depending however on the astrophysical uncertainties, in particular on the assumption on the galactic magnetic field model. The signal from single bright clumps is instead largely attenuated by diffusion effects and offers only poor detection perspectives.Comment: 12 pages, 7 figures; v2: some references added, some discussions enlarged; matches journal versio

    Control of magnetism in singlet-triplet superconducting heterostructures

    Get PDF
    We analyze the magnetization at the interface between singlet and triplet superconductors and show that its direction and dependence on the phase difference across the junction are strongly tied to the structure of the triplet order parameter as well as to the pairing interactions. We consider equal spin helical, opposite spin chiral, and mixed symmetry pairing on the triplet side and show that the magnetization vanishes at ϕ=0\phi=0 only in the first case, follows approximately a cosϕ\cos\phi behavior for the second, and shows higher harmonics for the last configuration. We trace the origin of the magnetization to the magnetic structure of the Andreev bound states near the interface, and provide a symmetry-based explanation of the results. Our findings can be used to control the magnetization in superconducting heterostructures and to test symmetries of spin-triplet superconductors.Comment: 5 pages, 3 figure

    Clustering properties of ultrahigh energy cosmic rays and the search for their astrophysical sources

    Full text link
    The arrival directions of ultrahigh energy cosmic rays (UHECRs) may show anisotropies on all scales, from just above the experimental angular resolution up to medium scales and dipole anisotropies. We find that a global comparison of the two-point auto-correlation function of the data with the one of catalogues of potential sources is a powerful diagnostic tool. In particular, this method is far less sensitive to unknown deflections in magnetic fields than cross-correlation studies while keeping a strong discrimination power among source candidates. We illustrate these advantages by considering ordinary galaxies, gamma ray bursts and active galactic nuclei as possible sources. Already the sparse publicly available data suggest that the sources of UHECRs may be a strongly clustered sub-sample of galaxies or of active galactic nuclei. We present forecasts for various cases of source distributions which can be checked soon by the Pierre Auger Observatory.Comment: 11 pages, 8 figures, 4 tables; minor changes, matches published versio

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Steps towards a map of the nearby universe

    Get PDF
    We present a new analysis of the Sloan Digital Sky Survey data aimed at producing a detailed map of the nearby (z < 0.5) universe. Using neural networks trained on the available spectroscopic base of knowledge we derived distance estimates for about 30 million galaxies distributed over ca. 8,000 sq. deg. We also used unsupervised clustering tools developed in the framework of the VO-Tech project, to investigate the possibility to understand the nature of each object present in the field and, in particular, to produce a list of candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed

    Sensitivity of a VIRGO pair to stochastic GW backgrounds

    Get PDF
    The sensitivity of a pair of VIRGO interferometers to gravitational waves backgrounds (GW) of cosmological origin is analyzed for the cases of maximal and minimal overlap of the two detectors. The improvements in the detectability prospects of scale-invariant and non-scale-invariant logarithmic energy spectra of relic GW are discussed.Comment: 25 pages in RevTex style with 6 figure
    corecore