Annihilation of Dark Matter usually produces together with gamma rays
comparable amounts of electrons and positrons. The e+e- gyrating in the
galactic magnetic field then produce secondary synchrotron radiation which thus
provides an indirect mean to constrain the DM signal itself. To this purpose,
we calculate the radio emission from the galactic halo as well as from its
expected substructures and we then compare it with the measured diffuse radio
background. We employ a multi-frequency approach using data in the relevant
frequency range 100 MHz-100 GHz, as well as the WMAP Haze data at 23 GHz. The
derived constraints are of the order =10^{-24} cm3 s^{-1} for a DM
mass m_chi=100 GeV sensibly depending however on the astrophysical
uncertainties, in particular on the assumption on the galactic magnetic field
model. The signal from single bright clumps is instead largely attenuated by
diffusion effects and offers only poor detection perspectives.Comment: 12 pages, 7 figures; v2: some references added, some discussions
enlarged; matches journal versio