36 research outputs found

    Altered hippocampal epigenetic regulation underlying reduced cognitive development in response to early life environmental insults

    Get PDF
    The hippocampus is involved in learning and memory and undergoes significant growth and maturation during the neonatal period. Environmental insults during this developmental timeframe can have lasting effects on brain structure and function. This study assessed hippocampal DNA methylation and gene transcription from two independent studies reporting reduced cognitive development stemming from early life environmental insults (iron deficiency and porcine reproductive and respiratory syndrome virus (PRRSv) infection) using porcine biomedical models. In total, 420 differentially expressed genes (DEGs) were identified between the reduced cognition and control groups, including genes involved in neurodevelopment and function. Gene ontology (GO) terms enriched for DEGs were associated with immune responses, angiogenesis, and cellular development. In addition, 116 differentially methylated regions (DMRs) were identified, which overlapped 125 genes. While no GO terms were enriched for genes overlapping DMRs, many of these genes are known to be involved in neurodevelopment and function, angiogenesis, and immunity. The observed altered methylation and expression of genes involved in neurological function suggest reduced cognition in response to early life environmental insults is due to altered cholinergic signaling and calcium regulation. Finally, two DMRs overlapped with two DEGs, VWF and LRRC32, which are associated with blood brain barrier permeability and regulatory T-cell activation, respectively. These results support the role of altered hippocampal DNA methylation and gene expression in early life environmentally-induced reductions in cognitive development across independent studies.</p

    [Avian cytogenetics goes functional] Third report on chicken genes and chromosomes 2015

    Get PDF
    High-density gridded libraries of large-insert clones using bacterial artificial chromosome (BAC) and other vectors are essential tools for genetic and genomic research in chicken and other avian species... Taken together, these studies demonstrate that applications of large-insert clones and BAC libraries derived from birds are, and will continue to be, effective tools to aid high-throughput and state-of-the-art genomic efforts and the important biological insight that arises from them

    Genomic insight into the influence of selection, crossbreeding, and geography on population structure in poultry

    No full text
    In poultry, the population structure of local breeds is usually complex mainly due to unrecorded breeding. Local chicken breeds offer an interesting proxy to understand the complexity of population structure in the context of human-mediated development of diverse morphologies and varieties. We studied 37 traditional Dutch chicken breeds to investigate population structure and the corresponding genomic impact using whole-genome sequence data. Results: Looking at the genetic differences between breeds, the Dutch chicken breeds demonstrated a complex and admixed subdivided structure. The dissection of this complexity highlighted the influence of selection adhering to management purposes, as well as the role of geographic distance within subdivided breed clusters. Identification of signatures of genetic differentiation revealed genomic regions that are associated with diversifying phenotypic selection between breeds, including dwarf size (bantam) and feather color. In addition, with a case study of a recently developed bantam breed developed by crossbreeding, we provide a genomic perspective on the effect of crossbreeding. Conclusions: This study demonstrates the complex population structure of local traditional Dutch chicken, and provides insight into the genomic basis and the factors involved in the formation of this complexity

    Early and late feathering in Turkey and chicken : Same gene but different mutations

    No full text
    Background: Sex-linked slow (SF) and fast (FF) feathering rates at hatch have been widely used in poultry breeding for autosexing at hatch. In chicken, the sex-linked K (SF) and k+ (FF) alleles are responsible for the feathering rate phenotype. Allele K is dominant and a partial duplication of the prolactin receptor gene has been identified as the causal mutation. Interestingly, some domesticated Turkey lines exhibit similar slow- and fast-feathering phenotypes, but the underlying genetic components and causal mutation have never been investigated. In this study, our aim was to investigate the molecular basis of feathering rate at hatch in domestic Turkey. Results: We performed a sequence-based case-control association study and detected a genomic region on chromosome Z, which is statistically associated with rate of feathering at hatch in Turkey. We identified a 5-bp frameshift deletion in the prolactin receptor (PRLR) gene that is responsible for slow feathering at hatch. All female cases (SF Turkeys) were hemizygous for this deletion, while 188 controls (FF Turkeys) were hemizygous or homozygous for the reference allele. This frameshift mutation introduces a premature stop codon and six novel amino acids (AA), which results in a truncated PRLR protein that lacks 98 C-terminal AA. Conclusions: We present the causal mutation for feathering rate in Turkey that causes a partial C-terminal loss of the prolactin receptor, and this truncated PRLR protein is strikingly similar to the protein encoded by the slow feathering K allele in chicken

    A novel next generation sequencing approach to improve sarcoma diagnosis

    No full text
    Contains fulltext : 225032.pdf (Publisher’s version ) (Closed access)Sarcoma is a rare disease affecting both bone and connective tissue and with over 100 pathologic entities, differential diagnosis can be difficult. Complementing immune-histological diagnosis with current ancillary diagnostic techniques, including FISH and RT-PCR, can lead to inconclusive results in a significant number of cases. We describe here the design and validation of a novel sequencing tool to improve sarcoma diagnosis. A NGS DNA capture panel containing probes for 87 fusion genes and 7 genes with frequent copy number changes was designed and optimized. A cohort of 113 DNA samples extracted from soft-tissue and bone sarcoma FFPE material with clinical FISH and/or RT-PCR results positive for either a translocation or gene amplification was used for validation of the NGS method. Sarcoma-specific translocations or gene amplifications were confirmed in 110 out of 113 cases using FISH and/or RT-PCR as gold-standard. MDM2/CDK4 amplification and a total of 25 distinct fusion genes were identified in this cohort of patients using the NGS approach. Overall, the sensitivity of the NGS panel is 97% with a specificity of 100 and 0% failure rate. Targeted NGS appears to be a feasible and cost-effective approach to improve sarcoma subtype diagnosis with the ability to screen for a wide range of genetic aberrations in one test
    corecore