51 research outputs found

    A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Bothrops </it>is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of <it>Bothrops alternatus</it>, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay.</p> <p>Results</p> <p>A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A<sub>2 </sub>(5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A<sub>2 </sub>were essentially acidic; no basic PLA<sub>2 </sub>were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed.</p> <p>Conclusions</p> <p><it>Bothrops alternatus </it>venom gland contains the major toxin classes described for other <it>Bothrops </it>venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA<sub>2 </sub>agrees with the lower myotoxicity of this venom compared to other <it>Bothrops </it>species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.</p

    Einstufung als öffentlicher Auftraggeber

    No full text

    A 780-nW Frequency-Agile Fully Integrated Super-Regenerative Multi-Channel UHF Receiver for Continuous Spectral Monitoring

    No full text
    This paper proposes a frequency agile fully integrated super-regenerative receiver for spectral power estimation. A 180-nm implementation of the proposed receiver is presented with measurements. The receiver draws 26 μA from a 1.8 Volt supply to scan 60 frequency points between 380 and 960 MHz every 1.8 ms, hence 780 nW per channel. The “resolution bandwidth” lies between 2 and 15 MHz, depending on the quench-signal. No external filter components are used. Filter quality factors greater than 400 are achieved, using an on-chip inductor. The best measured receiver sensitivity is -75 dBm

    Parallel cell projection rendering of adaptive mesh refinement data

    Get PDF
    Adaptive mesh refinement (AMR) is a technique used in numerical simulations to automatically refine (or de-refine) certain regions of the physical domain in a finite difference calculation. AMR data consists of nested hierarchies of data grids. As AMR visualization is still a relatively unexplored topic, our work is motivated by the need to perform efficient visualization of large AMR data sets. We present a software algorithm for parallel direct volume rendering of AMR data using a cell-projection technique on several different parallel platforms. Our algorithm can use one of several different distribution methods, and we present performance results for each of these alternative approaches. By partitioning an AMR data set into blocks of constant resolution and estimating rendering costs of individual blocks using an application specific benchmark, it is possible to achieve even load balancing

    Assessing the complexity of clinical cases

    No full text
    corecore