18 research outputs found
UPLC-MS/MS Based Identification of Dietary Steryl Glucosides by Investigation of Corresponding Free Sterols
Dietary plant foods are characterized by a vast molecular diversity of glycosylated sterols (SG) that differ in the structure of the steryl backbone. The identification of these polar steryl conjugates represents a major challenge as they are structurally highly similar, and commercial standards are limited to a few naturally abundant species. Spectral databases do not yet contain MS/MS spectra of these sterol conjugates obtained by electrospray ionization (ESI), which would facilitate their reliable identification. Thus, this study aimed at providing novel information on ESI-MS/MS spectra of both abundant and minor SG found in foods. As a first step, however, free sterols (FS) were investigated for their fragmentation behavior as they share the same intermediate ion as SG. Pure SG were obtained from commercially available standard mixtures and minor SG were extracted from different food sources (oat bran, wheat bran, pumpkin seeds, melon, rapeseeds, and potato peel). ESI-MS/MS spectra of 15 FS were assessed and fragment ions reflective of structural features were identified and rationalized. Subsequently, 14 SG were identified at four different levels, while relative retention times from chromatographic separation and spectral features of FS served to identify five SG. Spectral data from FS were directly transferable to SG when analyzed as aglycone ions as shown by similarity scores while SG were characterized by shorter retention times in reverse phase chromatography and the additional analysis as sodiated adduct confirmed their glycosidic nature. Moreover, we report for the first time the occurrence of 24-methylenecholesterol and a 4-monomethyl sterol as glycosidic conjugates in higher plants. The presented data will serve as a valuable tool for SG profiling of foods by facilitating their identification
Blood lactose after dairy product intake in healthy men.
The absence of a dedicated transport for disaccharides in the intestine implicates that the metabolic use of dietary lactose relies on its prior hydrolysis at the intestinal brush border. Consequently, lactose in blood or urine has mostly been associated with specific cases in which the gastrointestinal barrier is damaged. On the other hand, lactose appears in the blood of lactating women and has been detected in the blood and urine of healthy men, indicating that the presence of lactose in the circulation of healthy subjects is not incompatible with normal physiology. In this cross-over study we have characterised the postprandial kinetics of lactose, and its major constituent, galactose, in the serum of fourteen healthy men who consumed a unique dose of 800 g milk or yogurt. Genetic testing for lactase persistence and microbiota profiling of the subjects were also performed. Data revealed that lactose does appear in serum after dairy intake, although with delayed kinetics compared with galactose. Median serum concentrations of approximately 0·02 mmol/l lactose and approximately 0·2 mmol/l galactose were observed after the ingestion of milk and yogurt respectively. The serum concentrations of lactose were inversely correlated with the concentrations of galactose, and the variability observed between the subjects' responses could not be explained by the presence of the lactase persistence allele. Finally, lactose levels have been associated with the abundance of the Veillonella genus in faecal microbiota. The measurement of systemic lactose following dietary intake could provide information about lactose metabolism and nutrient transport processes under normal or pathological conditions
Biomarker of food intake for assessing the consumption of dairy and egg products
Foods of animal origin constitute one of the predominant food groups consumed in Western diets. They play an essential role in human nutrition as they represent an excellent source of high quality proteins, vitamins, minerals and fats. Foods of animal origin are highly diverse (e.g. meat, fish, dairy products and eggs) and their associations with a range of nutritional and health outcomes are therefore heterogeneous. Such associations are also often weak or debated due to the difficulty in establishing correct assessments of dietary intake. Therefore, in order to better characterize associations between the consumption of specific foods of animal origin and health outcomes, it is important to identify reliable biomarkers of food intake (BFIs). BFIs provide a more accurate measure of intake and are independent of the memory and sincerity of the subjects as well as of their knowledge about the consumed foods. To date, only a very limited number of compounds have been proposed as biomarkers of the intake of foods of animal origin and further studies are necessary to validate them and to discover new candidate BFIs. We have, therefore, conducted a systematic search of the scientific literature to evaluate the current status of potential BFIs for each category of foods of animal origin commonly consumed in Europe. This review reports on candidate biomarkers for dairy products and eggs intake, while biomarkers for fish and meat intake will be published separately. Remarkably, validated BFIs for dairy products and eggs are not available. A series of challenges hinders their identification and validation, in particular the heterogeneous composition of each food within a product category and the lack of specificity of the markers identified so far. Untargeted metabolomic strategies may allow the identification of novel food biomarkers, that, when taken separately or in combination, could be used to assess the intake of dairy products and eggs
Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies
The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state‐of‐the‐art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow
UPLC-MS/MS Based Identification of Dietary Steryl Glucosides by Investigation of Corresponding Free Sterols
Dietary plant foods are characterized by a vast molecular diversity of glycosylated sterols (SG) that differ in the structure of the steryl backbone. The identification of these polar steryl conjugates represents a major challenge as they are structurally highly similar, and commercial standards are limited to a few naturally abundant species. Spectral databases do not yet contain MS/MS spectra of these sterol conjugates obtained by electrospray ionization (ESI), which would facilitate their reliable identification. Thus, this study aimed at providing novel information on ESI-MS/MS spectra of both abundant and minor SG found in foods. As a first step, however, free sterols (FS) were investigated for their fragmentation behavior as they share the same intermediate ion as SG. Pure SG were obtained from commercially available standard mixtures and minor SG were extracted from different food sources (oat bran, wheat bran, pumpkin seeds, melon, rapeseeds, and potato peel). ESI-MS/MS spectra of 15 FS were assessed and fragment ions reflective of structural features were identified and rationalized. Subsequently, 14 SG were identified at four different levels, while relative retention times from chromatographic separation and spectral features of FS served to identify five SG. Spectral data from FS were directly transferable to SG when analyzed as aglycone ions as shown by similarity scores while SG were characterized by shorter retention times in reverse phase chromatography and the additional analysis as sodiated adduct confirmed their glycosidic nature. Moreover, we report for the first time the occurrence of 24-methylenecholesterol and a 4-monomethyl sterol as glycosidic conjugates in higher plants. The presented data will serve as a valuable tool for SG profiling of foods by facilitating their identification.ISSN:2296-264
POSTPRANDIAL SERUM LACTOSE AFTER ACUTE INTAKE OF MILK AND YOGHURT
The use of dietary lactose as a source of energy requires its prior hydrolysis at the intestinal brush border into glucose and galactose. Indeed, as a disaccharide, intact lactose cannot be actively absorbed. Therefore, the presence of unhydrolysed lactose in plasma or urine has mostly been associated with specific cases such as lactating women or altered gastrointestinal permeability. Nevertheless, lactose has also been detected in the blood and urine of healthy men, indicating that the presence of lactose in the circulation of healthy subjects is not incompatible with normal physiology. The present crossover study monitored, in 14 healthy men, the postprandial appearance of lactose in serum after a single intake of 800 g of milk or yoghurt. Genetic testing for lactase persistence and microbiota profiling of the subjects were also performed in order to investigate their potential contribution to postprandial lactose serum levels. Data revealed that lactose does appear in serum after dairy intake, and with delayed kinetics when compared to the actively absorbed galactose. A notable inter-individual variability was observed and, although lactose levels were inversely correlated with galactose levels, the presence of the lactase persistence allele could not explain this variability. Finally, lactose levels have been associated with the abundance of the Veillonella genus in faecal microbiota. The measurement of systemic lactose following dietary intake could provide information about lactose metabolism and nutrient transport processes under normal or pathological conditions
Biomarker of food intake for assessing the consumption of dairy and egg products
Abstract Dairy and egg products constitute an important part of Western diets as they represent an excellent source of high-quality proteins, vitamins, minerals and fats. Dairy and egg products are highly diverse and their associations with a range of nutritional and health outcomes are therefore heterogeneous. Such associations are also often weak or debated due to the difficulty in establishing correct assessments of dietary intake. Therefore, in order to better characterize associations between the consumption of these foods and health outcomes, it is important to identify reliable biomarkers of their intake. Biomarkers of food intake (BFIs) provide an accurate measure of intake, which is independent of the memory and sincerity of the subjects as well as of their knowledge about the consumed foods. We have, therefore, conducted a systematic search of the scientific literature to evaluate the current status of potential BFIs for dairy products and BFIs for egg products commonly consumed in Europe. Strikingly, only a limited number of compounds have been reported as markers for the intake of these products and none of them have been sufficiently validated. A series of challenges hinders the identification and validation of BFI for dairy and egg products, in particular, the heterogeneous composition of these foods and the lack of specificity of the markers identified so far. Further studies are, therefore, necessary to validate these compounds and to discover new candidate BFIs. Untargeted metabolomic strategies may allow the identification of novel biomarkers, which, when taken separately or in combination, could be used to assess the intake of dairy and egg products