1,324 research outputs found

    Towards representing human behavior and decision making in Earth system models. An overview of techniques and approaches

    Get PDF
    Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals’ behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers’ often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals’ preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales

    Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World-Earth modeling framework

    Get PDF
    Analysis of Earth system dynamics in the Anthropocene requires to explicitly take into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth System Models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic Integrated Assessment Models typically do so only with limited scope. This paper (i) proposes design principles for constructing World-Earth Models (WEM) for Earth system analysis of the Anthropocene, i.e., models of social (World) - ecological (Earth) co-evolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g. carbon cycle dynamics), socio-metabolic/economic (e.g. economic growth) and socio-cultural processes (e.g. voting on climate policies or changing social norms) and their feedback interactions, and are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic/economic and socio-cultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing socio-cultural processes and feedbacks could fundamentally change macroscopic model outcomes

    Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution

    Get PDF
    The articular cartilage of synovial joints ensures friction-free mobility and attenuates mechanical impact on the joint during movement. These functions are mediated by the complex network of extracellular molecules characteristic for articular cartilage. Zonal differences in the extracellular matrix (ECM) are well recognized. However, knowledge about the precise molecular composition in the different zones remains limited. In the present study, we investigated the distribution of ECM molecules along the surface-to-bone axis, using quantitative non-targeted as well as targeted proteomics.\ In a discovery approach, iTRAQ mass spectrometry was used to identify all extractable ECM proteins in the different layers of a human lateral tibial plateau full thickness cartilage sample. A targeted MRM mass spectrometry approach was then applied to verify these findings and to extend the analysis to four medial tibial plateau samples. In the lateral tibial plateau sample, the unique distribution patterns of 70 ECM proteins were identified, revealing groups of proteins with a preferential distribution to the superficial, intermediate or deep regions of articular cartilage. The detailed analysis of selected 29 proteins confirmed these findings and revealed similar distribution patterns in the four medial tibial plateau samples. The results of this study allow, for the first time, an overview of the zonal distribution of a broad range of cartilage ECM proteins and open up further investigations of the functional roles of matrix proteins in the different zones of articular cartilage in health and disease

    Clusters in Simple Fluids

    Full text link
    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids.Comment: 48 pages, 12 figures included, to be published in Physics Report

    The Delphi Delirium Management Algorithms. A practical tool for clinicians, the result of a modified Delphi expert consensus approach

    Get PDF
    Delirium is common in hospitalised patients, and there is currently no specific treatment. Identifying and treating underlying somatic causes of delirium is the first priority once delirium is diagnosed. Several international guidelines provide clinicians with an evidence-based approach to screening, diagnosis and symptomatic treatment. However, current guidelines do not offer a structured approach to identification of underlying causes. A panel of 37 internationally recognised delirium experts from diverse medical backgrounds worked together in a modified Delphi approach via an online platform. Consensus was reached after five voting rounds. The final product of this project is a set of three delirium management algorithms (the Delirium Delphi Algorithms), one for ward patients, one for patients after cardiac surgery and one for patients in the intensive care unit.</p

    Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences

    Get PDF
    A rapid coal phase-out is needed to meet the goals of the Paris Agreement, but is hindered by serious challenges ranging from vested interests to the risks of social disruption. To understand how to organize a global coal phase-out, it is crucial to go beyond cost-effective climate mitigation scenarios and learn from the experience of previous coal transitions. Despite the relevance of the topic, evidence remains fragmented throughout different research fields, and not easily accessible. To address this gap, this paper provides a systematic map and comprehensive review of the literature on historical coal transitions. We use computer-assisted systematic mapping and review methods to chart and evaluate the available evidence on historical declines in coal production and consumption. We extracted a dataset of 278 case studies from 194 publications, covering coal transitions in 44 countries and ranging from the end of the 19th century until 2021. We find a relatively recent and rapidly expanding body of literature reflecting the growing importance of an early coal phase-out in scientific and political debates. Previous evidence has primarily focused on the United Kingdom, the United States, and Germany, while other countries that experienced large coal declines, like those in Eastern Europe, are strongly underrepresented. An increasing number of studies, mostly published in the last 5 years, has been focusing on China. Most of the countries successfully reducing coal dependency have undergone both demand-side and supply-side transitions. This supports the use of policy approaches targeting both demand and supply to achieve a complete coal phase-out. From a political economy perspective, our dataset highlights that most transitions are driven by rising production costs for coal, falling prices for alternative energies, or local environmental concerns, especially regarding air pollution. The main challenges for coal-dependent regions are structural change transformations, in particular for industry and labor. Rising unemployment is the most largely documented outcome in the sample. Policymakers at multiple levels are instrumental in facilitating coal transitions. They rely mainly on regulatory instruments to foster the transitions and compensation schemes or investment plans to deal with their transformative processes. Even though many models suggest that coal phase-outs are among the low-hanging fruits on the way to climate neutrality and meeting the international climate goals, our case studies analysis highlights the intricate political economy at work that needs to be addressed through well-designed and just policies.BMBF, 01LA1826A, Ökonomie des Klimawandels - Verbundprojekt: Die politische Ökonomie eines globalen Kohleausstiegs (PEGASOS) - Teilprojekt 1: Koordination, Analyse der politischen Ökonomie vergangener KohleausstiegeBMBF, 01LA1810A, Ökonomie des Klimawandels - Verbundprojekt: Die Zukunft fossiler Energieträger im Zuge von Treibhausgasneutralität (FFF) - Teilprojekt 1: Implementierung von AusstiegspfadenBMBF, 01LN1704A, Nachwuchsgruppe Globaler Wandel: CoalExit - Die Ökonomie des Kohleausstiegs - Identifikation von Bausteinen für Rahmenpläne zukünftiger regionaler StrukturwandelBMBF, 01LG1910A, Qualitätssicherung von IPCC-AR6: Chapter Scientist für WG III, Kapitel 2 (Emissions trends and drivers
    corecore