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Abstract

Active learning for systematic review screening promises to reduce the human effort required to identify relevant
documents for a systematic review. Machines and humans work together, with humans providing training data, and
the machine optimising the documents that the humans screen. This enables the identification of all relevant
documents after viewing only a fraction of the total documents. However, current approaches lack robust stopping
criteria, so that reviewers do not know when they have seen all or a certain proportion of relevant documents. This
means that such systems are hard to implement in live reviews. This paper introduces a workflow with flexible
statistical stopping criteria, which offer real work reductions on the basis of rejecting a hypothesis of having missed a
given recall target with a given level of confidence. The stopping criteria are shown on test datasets to achieve a
reliable level of recall, while still providing work reductions of on average 17%. Other methods proposed previously
are shown to provide inconsistent recall and work reductions across datasets.
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Background

Evidence synthesis technology is a rapidly emerging field
that promises to change the practice of evidence synthe-
sis work [1]. Interventions have been proposed at vari-
ous points in order to reduce the human effort required
to produce systematic reviews and other forms of evi-
dence synthesis. A major strand of the literature works
on screening: the identification of relevant documents in
a set of documents whose relevance is uncertain [2]. This
is a time-consuming and repetitive task, and in a research
environment with constrained resources and increasing
amounts of literature, this may limit the scope of the
evidence synthesis projects undertaken. Several papers
have developed active learning (AL) approaches [3-7] to
reduce the time required to screen documents. This paper
sets out how current approaches are unreliable in practice,
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and outlines and evaluates modifications that would make
AL systems ready for live reviews.

Active learning is an iterative process where documents
screened by humans are used to train a machine learning
model to predict the relevance of unseen papers [8]. The
algorithm chooses which studies will next be screened by
humans, often those which are likely to be relevant or
about which the model is uncertain, in order to generate
more labels to feed back to the machine. By prioritis-
ing those studies most likely to be relevant, a human
reviewer most often identifies all relevant studies—or a
given proportion of relevant studies (described by recall:
the number of relevant studies identified divided by the
total number of relevant studies)—before having seen all
the documents in the corpus. The proportion of docu-
ments not yet seen by the human when they reach the
given recall threshold is referred to as the work saved.
This represents the proportion of documents that they do
not have to screen, which they would have had to without
machine learning.

Machine learning applications are often evaluated using
sets of documents from already completed systematic
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reviews for which inclusion or exclusion labels already
exist. As all human labels are known a priori, it is pos-
sible to simulate the screening process, recording when
a given recall target has been achieved. In live review
settings, however, recall remains unknown until all docu-
ments have been screened. In order for work to really be
saved, reviewers have to stop screening while uncertain
about recall. This is particularly problematic in system-
atic reviews because low recall increases the risk of bias
[9]. The lack of appropriate stopping criteria has there-
fore been identified as a research gap [10, 11], although
some approaches have been suggested. These have most
commonly fallen into the following categories:

e Sampling criteria: Reviewers estimate the number of
relevant documents by taking a random sample at the
start of the process. They stop when this number, or
a given proportion of it, has been reached [12].

® Heuristics: Reviewers stop when a given number of
irrelevant articles are seen in a row [6, 7].

® Pragmatic criteria: Reviewers stop when they run out
of time [3].

e Novel automatic stopping criteria: Recent papers
have proposed more complicated novel systems for
automatically deciding when to stop screening
[13-15].

We review the first three classes of these methods in
the following section and discuss their theoretical limita-
tions. They are then tested on several previous systematic
review datasets. We demonstrate theoretically and with
our experimental results that these three classes of meth-
ods cannot deliver consistent levels of work savings or
recall—particularly across different domains, or datasets
with different properties [2]. We also discuss the limi-
tations of novel automatic stopping criteria, which have
all demonstrated promising results, but do not achieve a
given level of recall in a reliable or reportable way. Without
the reliable or reportable achievement of a desired level of
recall, deployment of AL systems in live reviews remains
challenging.

This study proposes a system for estimating the recall
based on random sampling of remaining documents. We
use a simple statistical method to iteratively test a null
hypothesis that the recall achieved is less than a given tar-
get recall. If the hypothesis can be rejected, we conclude
that the recall target has been achieved with a given con-
fidence level and screening can be stopped. This allows
AL users to predefine a target in terms of uncertainty and
recall, so that they can make transparent, easily commu-
nicable statements like “We reject the null hypothesis that
we achieve a recall of less than 95% with a significance
level of 5%

In the remainder of the paper, we first discuss in detail
the shortcomings of existing stopping criteria. Then, we
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introduce our new criteria based on a hypergeometric
test. We evaluate our stopping criteria and compare their
performance with heuristic- and sampling-based criteria
on real-world systematic review datasets on which AL
systems have previously been tested [13, 16—18].

Methods review

We start by explaining the sampling- and heuristic-based
stopping criteria and discussing their methodological lim-
itations.

Sampling-based stopping criteria

The stopping criterion suggested by Shemilt et al. [12]
involves establishing the Baseline Inclusion Rate (BIR), by
taking a random sample at the beginning of screening. The
BIR is used to estimate the number of relevant documents
in the whole dataset. Reviewers continue to screen until
this number, or a proportion of it corresponding to the
desired level of recall, is reached.

However, the estimation of the BIR fails to correctly
take into account sampling uncertainty.! This uncertainty
is crucial, as errors can have severe consequences. Let
us assume that users will stop screening when they have
identified 95% of the relevant number of documents. If
the estimated number of relevant documents is more than
the true number of relevant documents divided by 0.95,
then the users will never see 95% of the estimated number.
This means that they will keep screening until they have
seen all documents, and no work savings will be achieved.
Conversely, if the number of relevant documents is under-
estimated by even a single unit, then the recall achieved
will be lower than the target.

The number of relevant documents drawn without
replacement from a finite sample of documents follows
the hypergeometric distribution. Figure 1a shows the dis-
tribution of the predicted number of documents after
drawing 1000 documents from a total of 20,000 docu-
ments, where 500 documents (2.5%) are relevant. The
left shaded portion of the graph shows all the cases
where the recall will be less than 95%. This occurs 48%
of the time. The right shaded portion of the graph
shows the cases where the number of relevant docu-
ments is overestimated so much that no work savings
could be made to achieve a target recall of 95%. This
occurs 29% of the time. In only 23% of cases can work
savings be achieved while still achieving a recall of at
least 95%.

! Although Shemilt et al. [12] employ a method to choose a sample size based
on uncertainty, they fail to acknowledge the potential implications for recall of
their choice. Their margin of error of 0.0025 and observed proportion of
relevant studies of 0.0005 translate to estimates of 400 & 451 relevant results.
To reduce the margin of error to +5% of estimated relevant studies, they
would have had to screen 638,323 out of 804,919 results. See the notebook
https://github.com/mcallaghan/rapid- screening/blob/master/analysis/
bir_theory.ipynb that accompanies this paper for a detailed discussion.
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Fig. 1 Distribution of under- or overestimation errors using the BIR sampling method in a dataset of 20,000 documents of which 500 are relevant. a
The probability distribution of the estimated number of relevant documents after a sample of 1000 documents. b The probability of each type of

Figure 1b shows the probability distribution of these
errors according to the sample size. Even with very large
samples, both types of error remain frequent. This shows
how baseline estimation inevitably offers poor reliability,
either in terms of recall or in work saved.

Heuristic stopping criteria
Some studies give the example of heuristic stopping crite-
ria based on drawing a given number of irrelevant articles
in a row [6, 7]. We take this as a proxy for estimating
that the proportion of remaining documents that are rele-
vant in the unseen documents is low, as the probability of
observing 0 relevant documents in a given sample (analo-
gous to a set of consecutive irrelevant results) is a decreas-
ing function of the number of relevant documents in the
population. We find this a promising intuition, but argue
that (1) it ignores uncertainty, as discussed in relation
to the previous method; (2) it lacks a formal description
that would help to find a suitable threshold for the crite-
rion; and (3) it misunderstands the significance of a low
proportion of relevant documents in estimating the recall.
Figure 2 illustrates this third point. We show two scenar-
ios with identical low proportions of relevant documents
observed in the unseen documents. In the top part of the
figure, machine learning (ML) has performed well, and
74% of the screened documents were relevant. In the bot-
tom part of the figure, ML has performed less well, and
only 26% of the screened documents were relevant. In
both cases, only 2% of unseen documents are relevant, but
2% of a larger number means more relevant documents
are missed. Recall is not simply a function of the propor-
tion of unseen documents that are relevant, but also of
the number of unseen documents. This also means that
where ML has performed well (as in the top figure), a
low proportion of relevant documents in those not yet
checked is indicative of lower recall than where ML has
performed less well. Likewise, where the proportion of
relevant documents in the whole corpus is low, a simi-

larly low proportion of relevant documents is likely to be
observed, even when true recall is low. This shows us that
even a perfect estimator of the proportion of unseen docu-
ments that are relevant is insufficient on its own to provide
sufficient information about when to stop screening. To
estimate recall reliably, it is necessary to take into account
the total number of unseen relevant documents (or their
proportion times the number of unseen documents).

Pragmatic stopping criteria

Wallace et al. [4] develop a “simple, operational stopping
criterion”: stopping after half the documents have been
screened. Although the criterion worked in their exper-
iment, it is unclear how this could be generalised, and
its development depended on knowledge of the true rel-
evance values. Jonnalagadda and Petitti [6] note that “the
reviewer can elect to end the process of classifying doc-
uments at any point, recognizing that stopping before
reviewing all documents involves a trade-off of lower
recall for reduced workload’; although clearly the reviewer
lacks information about probable recall.

Novel automatic stopping criteria
Two examples come from the information retrieval liter-
ature. Di Nunzio [14] presents a novel automatic stop-
ping criterion based on BM25, although recall reported is
“often between 0.92 and 0.94 and consistently over 0.7” Yu
and Menzies [13] also present a stopping criterion based
on BM25 which allows the user to target a specific level
of recall. However, reviewers are not given the opportu-
nity to specify a confidence level, and for two of the four
datasets in which they tested their criteria, the median
achieved recall at a stopping criteria targeting 95% recall
was below 95%. In each case, the reliability of the estimate
is dependent on the performance of the model.

Finally, Howard et al. [15] present a method to estimate
recall based on the number of irrelevant documents D
observed in a list of documents since the §th previous rele-
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Fig. 2 Similar low proportions of relevant documents in unseen documents with different consequences for recall. The top bar shows a random
distribution of relevant documents (green) and irrelevant documents (red) at a given proportion of relevance. The bottom bar shows distributions of
relevant and irrelevant documents in hypothetical sets of seen (right) and unseen (left—transparent) documents

vant document. They reason that this should follow the
negative binomial distribution based on the proportion of
remaining relevant documents p, and use this information
to estimate p, and with this, the total number of relevant
articles and the estimated recall.

However, their method does not quantify uncertainty,
but can only claim that the method “tends to result in a
conservative estimate of recall” (emphasis ours). This is
not guaranteed by the criterion itself but rather a find-
ing of the simulation with example datasets. Further, the
authors do not give sufficient information to reproduce
their results, providing neither code (they describe their
own proprietary software) nor an equation for p. Addi-
tionally, the criterion requires a tuning parameter §, which
users may have insufficient information to set optimally.
Lastly, because screening is a form of sampling without
replacement, the negative hypergeometric distribution
should be preferred to the negative binomial, even though
the latter can be a good approximation for cases with large
numbers of documents.

These last examples are promising developments, but
they all fail to take into account the needs of live sys-

tematic reviews, where the reliability of and ease of com-
munication about recall are paramount, and the results
must be independent of model performance. In the fol-
lowing, we explain our own method, which provides
clearly communicable estimates of recall, and which man-
ages uncertainty in a way robust to model performance.

Methods

A statistical stopping criterion for active learning

In our screening setup, we start off with Ny, documents
that are potentially relevant. ps; of these documents are
actually relevant, but we do not know this value a pri-
ori. As we screen relevant documents, we include them,
SO Pseen represents the number of relevant documents
screened, and recall 7 is given by:

= Pseen (1)
Ptot

We set a target recall 14, and a confidence level «.
We want to keep screening until T > 74, and devise a
hypothesis test to estimate whether this is the case with
a given level of confidence (Fig. 3). We do this based on
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interrupting the active-learning process and drawing a
random sample from the remaining unseen documents.
We first describe this test, before showing how a variation
on the test can be used to decide when to begin drawing a
random sample.

Random sampling

At the start of the sample, Ny; is the number of docu-
ments seen during the active learning process, and N is
the number of documents remaining, so that:

N = Niot — Nar (2)

We refer to the number of relevant documents seen dur-
ing active learning as paz, and the number of remaining
relevant documents as K. We do not know the value of K
but know that it is given by the total number of relevant
documents minus the number of relevant documents seen
during active learning.

3)

We now take random draws from the remaining N doc-
uments, and denote the number of documents drawn with
n and the number of relevant documents drawn with k.
The number of relevant documents seen is updated by

K = pyor — paL
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adding the number of relevant documents seen since sam-
pling began to the number of relevant documents seen
during active learning.

(4)

We proceed to form a null hypothesis that the true value
of recall is less than our target recall:

Pseen = PAL +k

(5)

Accordingly, the alternative hypothesis is that recall is
equal to or greater than our target:

Hy: 1t < 14y

Hy:t > 1

(6)

Because we are sampling without replacement, we can
use the hypergeometric distribution to find out the prob-
ability of observing k relevant documents in a sample of n
documents from a population of N documents of which K
are relevant. We know that k is distributed hypergeomet-
rically:

7)

We introduce a hypothetical value for K, which we call
K. This represents the minimum number of relevant
documents remaining at the start of sampling compatible

k ~ Hypergeometric(N, K, n)

A 4

N possibly relevant documents

Train model,

O T 4—{ Screen random documents

Screen most
relevant documents

no

Recall
unlikely <
threshold?

p<1l—-3%

N

q Screen random documents

no

Recall
unlikely <
threshold?

p<l—-a

Irrelevant documents Relevant documents

Fig. 3 A workflow for active learning in screening with a statistical stopping criterion
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with our null hypothesis that recall is below our target.

pseen

Koy = |_

— par +1] (8)

tar
This equation is derived by combining Eqgs. 1 and 4.
Because k can only take integer values, Ky, is the smallest
integer that satisfies the inequality in Eq. 5. With Kj,,, we
can reformulate our null hypothesis: the true number of
relevant documents in the sample is greater than or equal
to our hypothetical value.

Hp : K > Ky 9)

We test this by calculating the probability of observing
k or fewer relevant documents from the hypergeometric
distribution given by Ky, using the cumulative probabil-
ity mass function.

p = P(X < k),where X ~ Hypergeometric(N, Ky, 1)
(10)

Because the cumulative probability mass function
P(X < k) is decreasing with increasing K, this gives the
maximum probability of observing k for all values of K
compatible with our null hypothesis. Similar arguments
have been made to derive confidence intervals for estimat-
ing the parameter K in the hypergeometric distribution
function [19, 20], and the derivation of an equivalent cri-
terion could use the upper limit of such a confidence
interval of an estimated K from the observation of k.

We can reject our null hypothesis and stop screening
if the maximum probability of obtaining our observed
results given our null hypothesis p is below 1 — . To fur-
ther investigate the accuracy of the test, we perform an
experiment drawing 1 million random samples in 6 sce-
narios with different characteristics. We vary the value of
paL to simulate starting random sampling with different
levels of recall achieved.

Figure 4 shows that in each case, as long as recall is lower
than the target recall when sampling begins, the percent-
age of trials in which the criterion is trigerred to early is
within two tenths of a percentage point of 5% and the 5th
percentile of achieved recall values is within two tenths of
a percentage point of the target recall 95%.

Ranked quasi-sampling

We now proceed to describe a special case of the method
described above which we (1) use as a heuristic in order
to decide when to begin random sampling and (2) test as
an independent stopping criterion. The method works by
treating batches of previously screened documents as if
they were random samples.

2The notebook, https://github.com/mcallaghan/rapid- screening/blob/master/
analysis/hyper_criteria_theory.ipynb, in the github repository accompanying
this paper contains a step by step explanation of this method with code and
examples.
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We calculate p as above for subsets of the already
screened documents. Concretely, we use subsets of doc-
uments A; by looking back to the last i documents, A; =
{dN,on—1) -» ANyon—i}» Where the documents 4 are indexed
in the order in which they have been screened. For a spe-
cific i, this corresponds to random sampling beginning
after seeing i documents in the section above. Thus, we set
N4y to i, n to Ngeen — i, par to the number of relevant doc-
uments seen when i documents had been seen, and k to
the number of relevant documents seen since i documents
had been seen, and calculate p according to Eq. 10. We
compute p for all sets A; with i € Ngee, — 1... 1. This gives
us a vector p, representing the values of p which would
have been estimated at each point at which we could have
stopped active learning and began random sampling. The
point at which the p value for our null hypothesis is low-
est is given by p,;,. With the vectorised implementation
included in our accompanying code, these calculations are
completed in less than the time it would take a human to
code the next document.

First, we use this method as a useful heuristic for decid-
ing when to stop active learning, and switch to random
sampling. For this, we choose a higher threshold for the
likelihood, puin < 1 — 5. Second, we use the same ranked
quasi-sampling as an independent stopping criterion, by
continuing screening with active learning until p,,;, <
1 — a. We present the results of this second procedure
separately below.

Given that the documents seen during active learning
are ranked according to predicted relevance, they do not
in fact represent a random sample. This means that the
test is unlikely to be accurate. It would be reasonable to
assume that the proportion of relevant documents in each
ranked quasi-sample is as high if not higher than the pro-
portion of relevant documents in the unseen documents.
This assumption would make this estimator conservative.
As such, it works in a similar way to the criterion proposed
by Howard et al. [15], although it makes use of more infor-
mation and provides hypothesis testing rather than just a
point estimate of recall.

Evaluation

We evaluate each of the criteria discussed on real-world
test data, operationalising the heuristic stopping crite-
ria with 50, 100, and 200 consecutive irrelevant records.
We run 100 iterations on each dataset and record the
following measures:

e Actual Recall: The recall when the stopping criteria
were met.

e WS-SC: Work saved when the stopping criteria were
met.

e Additional Burden: The work saved when the
criterion was triggered subtracted from the work
saved when the recall target was actually achieved.
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For simplicity, we use a basic SVM model [21, 22], with
1-2 word n-grams taken from the document abstracts
used as input data. We start with random samples of 200
documents (we do not employ Shemilt et al’'s methods
for identifying the “optimal” sample size, as we showed
these in the “Methods review” section to be unhelpful).
Subsequently, we “screen’, that is, we reveal the labels of,
batches of the 20 documents with the highest predicted
relevance scores, retraining the model after each batch.
Theoretically, using smaller batch sizes could mean that
the recall target is achieved more quickly, but this is a
trade-off between computational time spent training and
the speed at which the algorithm can “learn” However, this
is a modelling choice which may affect work saved, but not
recall. Each criterion is evaluated after each document is
“screened”. For our criteria, we set the target recall value
to 95% and the confidence level to 95%.

The systematic review datasets used for testing are
described in Table 1. We use the seminal collection of sys-
tematic reviews used to develop machine learning appli-
cations for document screening by Cohen and co-authors
in 2006 [16], along with the widely used Proton Beam [17]
and COPD [18] datasets, and computer science datasets
used to test FASTREAD [13]. Testing on datasets with
different properties and from different domains is key to

Table 1 Dataset properties
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establishing criteria appropriate for general use. Choos-
ing as broad as possible data also prevents us from being
able to “tune” our machine learning approach in ways that
may work well for specific datasets but not generalise well.
Work savings, even maximum work savings, are there-
fore below the state of the art recorded for each of these
datasets. In this way, we can show how well the criteria
perform even when the model performs badly.

All computational steps required to reproduce this
analysis are documented online at https://github.com/
mcallaghan/rapid-screening.

Results
Figure 5 shows the actual recall and work savings achieved
when each stopping criterion has been satisfied. For com-
parison, we also include the results that would have been
achieved with a priori knowledge of the data, that is,
the work saved when the 95% recall target was actu-
ally reached. In a live systematic review, reviewers would
never know when this had been reached, but these are the
work savings most often reported in machine learning for
systematic review screening studies.

Both the random sampling and the ranked sampling cri-
teria achieve the target threshold of 95% in more than
95% of cases. That this is greater than 95% is accounted

Dataset Data source N documents N relevant documents Proportion relevant documents
0 UrinaryIncontinence cohen 284 68 0.24
1 Antihistamines cohen 287 90 0.31
2 Estrogens cohen 349 79 0.23
3 NSAIDS cohen 358 83 0.23
4 OralHypoglycemics cohen 475 135 0.28
5 Triptans cohen 594 205 0.35
6 ADHD cohen 803 83 0.10
7 AtypicalAntipsychotics cohen 1030 333 032
8 CalciumChannelBlockers cohen 1103 257 0.23
9 ProtonPumplnhibitors cohen 1210 227 0.19
10 SkeletalMuscleRelaxants cohen 1348 30 0.02
11 COPD copd_pb 1443 179 0.12
12 Kitchenham fastread 1700 45 0.03
13 Opiods cohen 1769 43 0.02
14 BetaBlockers cohen 1872 270 0.14
15 ACEInhibitors cohen 2234 168 0.08
16 Statins cohen 2743 152 0.06
17 ProtonBeam copd_pb 4108 240 0.06
18 Radjenovic fastread 5999 47 0.01
19 Wahono fastread 7002 62 0.01
20 Hall fastread 8911 104 0.01
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for by the fact that random sampling sometimes begins
after the target recall has been achieved, in which case
the null hypothesis would be a priori impossible. The
ranked quasi-sampling criterion outperforms the random
sampling criterion with respect to both recall and work
savings, saving a mean of 17% of the work compared to
15%, and missing the target in only 0.95% compared to
3.29% of cases. In theory, the ranked sampling criterion is
conservative if the assumption holds that documents cho-
sen by machine learning are not less likely to be relevant
than those chosen at random. Based on our experiments,
this assumption seems reasonable and accounts for the
higher recall. Because the ranked quasi-sampling crite-
rion can flexibly choose its sample, whereas the random
criterion has to wait for a random sample to be trig-
gered, the criterion is also triggered earlier, as it can
make use of more data. This accounts for the higher work
savings.

The baseline sampling criteron (Fig. 5¢) misses the 95%
recall target in 39.67% of cases, while the most common
work saving is 0%. This is in line with our expectations
that, due to random sampling error, the expected number
of documents will often be overestimated or underesti-
mated, resulting in zero work savings or poor recall.

The heuristic stopping criteria, both for 50 consecutive
irrelevant results (Fig. 5d—IH50) and for 200 irrelevant
results (Fig. 5e), also perform unreliably. Although the
mean work saved for IH50 is 41%, the target is missed
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in 39% of cases. The cases below the horizontal grey
line indicate instances where work has been saved at the
expense of achieving the recall target.

In Fig. 6, we rescale the x axis, calling it additional bur-
den, which is simply the work saved when the criterion
is triggered minus the work saved when the recall tar-
get was actually achieved. This measure indicates whether
the stopping criterion was triggered too early (negative
values) or too late (positive values). The figure directly
highlights the trade-offs involved in deciding when to stop
screening: For our criteria, there is mostly a small addi-
tional burden which comes with the necessity to make
sure the desired recall target has been reached and reject
the null hypothesis that this has not been the case. For the
other criteria, there are many cases in which additional
burden is negative, i.e. the criterion has been triggered
too early. In these cases, however, the desired recall is
missed.

To help explain the different work savings that were
observed in our experiments, we show the distribution of
work savings from our ranked quasi-sampling criterion
for each dataset in Fig. 7. In general, higher work sav-
ings are possible when the total number of documents is
larger. However, in datasets with a low proportion of rel-
evant documents, many documents need to be screened
to achieve a high confidence that there are only few rele-
vant documents remaining in the unseen ones. Therefore,
smaller work savings are possible.
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Figure 8 shows the recall and the p value for the null
hypothesis for the iteration where the recall target is
reached first for four datasets. Although the 95% recall
target is achieved very quickly in the Radjenovic dataset,
the null hypothesis cannot be excluded until much later.
This is because the dataset has only 47 relevant docu-
ments out of a population of 5999. After the 95% recall
target was achieved, 45 out of 47 relevant documents
had been seen and 5029 documents remained. The null
hypothesis was therefore that 3 or more of these 5029 doc-
uments were relevant, which requires a lot of evidence to
disprove. The burden of proof was smaller in the case of
the Proton Beam dataset: at the point that the 95% recall
threshold was reached, the null hypothesis to disprove was
that a minimum of 13 out of 3369 remaining documents
were relevant.

The Statins and Triptans datasets show how the cri-
terion performs when the machine learning model has
performed poorly in predicting relevant results. In each
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case, 95% recall is achieved with close to 20% of doc-
uments remaining. With fewer documents remaining, it
takes fewer screening decisions to rule out the possibility
that the number of relevant documents left is incompati-
ble with the achievement of the recall target.

Discussion

Our results show that it is possible to use machine learn-
ing to achieve a given level of recall with a given level
of confidence. The trade-off for achieving recall reliably
is that the work saving achieved is less than the maxi-
mum possible work saving. However, for large datasets
with a significant proportion of relevant documents, the
additional effort required to satisfy the criterion will be
small compared to the work saved by using machine learn-
ing. This makes the approach well suited to broad topics
with lots of literature. In other words, it is precisely where
machine learning will be most useful that the additional
effort will be small.
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Different use cases for machine learning enhanced
screening may also carry different requirements for recall,
or different tolerances for uncertainty. These can be flex-
ibly accommodated within our stopping criterion. Impor-
tantly, the ability to make statements about the authors’
confidence in achieving a given recall target makes it pos-
sible to clearly communicate the implications of using
machine learning enhanced screening to readers and
reviewers who are not machine learning specialists. This
is extremely important in live systematic reviews.

Our criteria have the further advantage that they are
independent of the choice or performance of the machine
learning model. If a model performs badly at discerning
relevant from irrelevant results, the only consequence will
be that the work saved will be low. With other criteria,
this may result in poor recall. When using machine learn-
ing for screening, poor recall can result in biassed results,
while low work savings represent no loss to the reviewer
as compared to not using machine learning.

One caveat in the derivation of our criteria is that we did
not address the problem of multiple testing formally. Such
a derivation is mathematically challenging and beyond
the scope of this paper. However, the performance of the
criteria shows that this is of limited practical concern.
Formally describing screening procedures with iterative
testing should be a next step towards even more rigourous
stopping criteria and should be fully worked out in future
research.

So far, systematic review standards have no way of
accommodating screening with machine learning. We
hope that the reliability and clarity of reporting offered
by our stopping criteria make them suitable for incorpo-
ration into standards, so that machine learning for sys-
tematic review screening can fulfil its promise of reducing
workload and making more ambitious reviews tractable.

Conclusion

This paper demonstrates the drawbacks of existing stop-
ping criteria for machine learning approaches to doc-
ument screening, particularly with regard to reliability.
We propose a simple method that delivers reliable recall,
independent of machine learning approach or model per-
formance. Our statistical stopping criteria allow users
to easily communicate the implications of their use of
machine learning, making machine learning enhanced
screening ready for live reviews.
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