442 research outputs found
Drought avoidance adaptive traits in seed germination and seedling growth of Citrullus amarus landraces
Abstract Citrullus lanatus cultivation is affected by drought stress. Citrullus species that grow wild and domesticated in arid areas, are considered potential useful donors of drought tolerance traits. Here, we evaluated the response of seed germination, seedling establishment and growth to different water availabilities in eleven landraces of C. amarus, from most of their cultivation range and in one C. lanatus commercial cultivar ('Sugar Baby'). 'Sugar Baby' germinated to lower water potential better than all C. amarus landraces, while seedling establishment was much higher in C. amarus than in C. lanatus. Finally, seedling growth of C. amarus landraces and the C. lanatus cultivar followed different patterns depending on water availability, showing enhanced biomass growth under wet conditions and no changes between dry and wet growing treatments, respectively. The different water use strategies in seed germination and seedling growth found in the two crops highlight drought avoidance strategies linked to the species growing environment in C. amarus, not present in the C. lanatus cultivar. The high seedling establishment, the plastic responses to water availabilities and the strong root system, indicate that genetic resources of C. amarus may have important applications in breeding programmes and in the selection of water-use efficient rootstock lines
Statistical anisotropy of magnetohydrodynamic turbulence
Direct numerical simulations of decaying and forced magnetohydrodynamic (MHD)
turbulence without and with mean magnetic field are analyzed by higher-order
two-point statistics. The turbulence exhibits statistical anisotropy with
respect to the direction of the local magnetic field even in the case of global
isotropy. A mean magnetic field reduces the parallel-field dynamics while in
the perpendicular direction a gradual transition towards two-dimensional MHD
turbulence is observed with inertial-range scaling of the
perpendicular energy spectrum. An intermittency model based on the Log-Poisson
approach, , is able to describe the observed
structure function scalings.Comment: 4 pages, 3 figures. To appear in Phys.Rev.
Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films
The influence of uncorrelated (nonmagnetic) overlayers on the magnetic
properties of thin itinerant-electron films is investigated within the
single-band Hubbard model. The Coulomb correlation between the electrons in the
ferromagnetic layers is treated by using the spectral density approach (SDA).
It is found that the presence of nonmagnetic layers has a strong effect on the
magnetic properties of thin films. The Curie temperatures of very thin films
are modified by the uncorrelated overlayers. The quasiparticle density of
states is used to analyze the results. In addition, the coupling between the
ferromagnetic layers and the nonmagnetic layers is discussed in detail. The
coupling depends on the band occupation of the nonmagnetic layers, while it is
almost independent of the number of the nonmagnetic layers. The induced
polarization in the nonmagnetic layers shows a long-range decreasing
oscillatory behavior and it depends on the coupling between ferromagnetic and
nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see:
http://orion.physik.hu-berlin.d
Electromagnetic probes
We introduce the seminal developments in the theory and experiments of
electromagnetic probes for the study of the dynamics of relativistic heavy ion
collisions and quark gluon plasma.Comment: 47 pages, 33 Figures; Lectures delivered by Dinesh K. Srivastava at
QGP Winter School (QGPWS08) at Jaipur, India, February 1-3, 200
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
Solar Wind Turbulence and the Role of Ion Instabilities
International audienc
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
- …