40 research outputs found

    Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary

    Get PDF
    Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary. -ICES Journal of Marine Science, doi:10.1093/icesjms/fsq158. Precautionary management for fish stocks in need of recovery requires that likely stock increases can be distinguished from model artefacts and that the uncertainty of stock status can be handled. Yet, ICES stock assessments are predominantly deterministic and many EC management plans are designed for deterministic advice. Using the eastern Baltic cod (Gadus morhua) stock as an example, we show how deterministic scientific advice can lead to illusive certainty of a rapid stock recovery and management decisions taken in unawareness of large uncertainties in stock status. By (i) performing sensitivity analyses of key assessment model assumptions, (ii) quantifying the uncertainty of the estimates due to data uncertainty, and (iii) developing alternative stock and ecosystem indicators, we demonstrate that estimates of recent fishing mortality and recruitment of this stock were highly uncertain and show that these uncertainties are crucial when combined with management plans based on fixed reference points of fishing mortality. We therefore call for fisheries management that does not neglect uncertainty. To this end, we outline a four-step approach to handle uncertainty of stock status in advice and management. We argue that it is time to use these four steps towards an ecosystem-based approach to fisheries management

    Political overfishing: Social-economic drivers in TAC setting decisions

    Get PDF
    Sustainable use of marine resources, as targeted by Ecosystem-Based Fishery Management (EBFM), is a highly ranked policy goal. However, many marine fish stocks are still overused, challenging sustainability goals. Reasons for this policy failure are disputed and they might be manifold, including economic, institutional, and social drivers. We use Generalized Additive Models (GAMs) to empirically determine and quantify the importance of interacting ecological, economic, and social drivers in a political decision making process, i.e. the setting of annual Total Allowable Catch (TAC) limits. GAMs allow non linear relationships between response and explanatory variables and due to their flexibility have successfully been applied to investigate ecosystem dynamics. Here, we use this modeling approach in a novel way to quantify social-economic-ecological feed-backs on policy decisions. European fisheries policy agreed in most cases to TACs higher than scientifically advised. We recorded this deviation for all managed European fish stocks for the time-series 1987-2013. Additionally, we make use of available time-series of socio-economic and ecological variables potentially influencing the decision, including national unemployment rates, stock status, economic growth rates, and employment in fisheries. We show that political decisions on TACs are not only driven by scientific advice on the ecological state of the stock, but that socio-economic variables have a significant effect on TACs – however not related to sound scientific advice. We conclude that scientific advice for a successful implementation of EBFM will have to address socio-economic driving forces more explicitly

    Interaction between top-down and bottom-up control in marine food webs

    Get PDF
    Climate change and resource exploitation have been shown to modify the importance of bottom-up and top-down forces in ecosystems. However, the resulting pattern of trophic control in complex food webs is an emergent property of the system and thus unintuitive. We develop a statistical nondeterministic model, capable of modeling complex patterns of trophic control for the heavily impacted North Sea ecosystem. The model is driven solely by fishing mortality and climatic variables and based on time-series data covering >40 y for six plankton and eight fish groups along with one bird group (>20 y). Simulations show the outstanding importance of top-down exploitation pressure for the dynamics of fish populations. Whereas fishing effects on predators indirectly altered plankton abundance, bottom-up climatic processes dominate plankton dynamics. Importantly, we show planktivorous fish to have a central role in the North Sea food web initiating complex cascading effects across and between trophic levels. Our linked model integrates bottom-up and top-down effects and is able to simulate complex long-term changes in ecosystem components under a combination of stressor scenarios. Our results suggest that in marine ecosystems, pathways for bottom-up and top-down forces are not necessarily mutually exclusive and together can lead to the emergence of complex patterns of control.En prensa9,77

    Regeneration potential of the Baltic Sea inferred from historical records

    Get PDF
    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with potential immense socio-economic consequences. Fortunately, some degraded ecosystems have started to show signs of regeneration. A key challenge for resource management is to anticipate the degree to which regeneration is possible, given the multiple threats ecosystems face. Here, we show that under current hydroclimatic conditions, complete regeneration of a heavily altered ecosystem –the Baltic Sea as case study– would not be possible. Instead, as the ecosystem regenerates it moves towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of the commercially important Atlantic cod, even under very low exploitation rates. Consequently, societal costs increase due to higher risk premium caused by increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to about 120 million € per year, which equals half of today’s maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines, in combination with increased biomass variability, lead to higher economic uncertainty and costs for exploited ecosystems, in particular under climate change.Kiel Cluster of Excellence 'Future Ocean

    A novel length back-calculation approach accounting for ontogenetic changes in the fish length – otolith size relationship during the early life of sprat (Sprattus sprattus)

    Get PDF
    (Sprattus sprattus), accounting for ontogenetic changes in the relationship between fish length and otolith length. In sprat, metamorphosis from larvae to juveniles is characterized by the coincidence of low length growth, strong growth in body height, and maximal otolith growth. Consequently, the method identifies a point of metamorphosis for an individual as the otolith radius at maximum increment widths. By incorporating this information in our back-calculation method, estimated length growth for the early larval stage was more than 60% higher compared with the result of the biological intercept model. After minimal length growth during metamorphosis, we found the highest increase in length during the early juvenile stage. We thus located the strongest growth potential in the early juvenile stage, which is supposed to be critical in determining recruitment strength in Baltic sprat

    Does the community size distribution influence the diversity-stability relationship? Empirical evidence from fish communities across European seas

    No full text
    The relationship, if any, between diversity and stability has puzzled ecologists for decades. Most studies use taxonomic classifications to understand why and under what conditions the community is more stable than the sum of its parts. However, fish populations, for example, are known for their strong ontogenetic-trophic niche shift, suggesting a size-based classification of individuals that complement information on its functional role. We propose a size-based approach to study the Diversity-Stability Relationship in order to understand the influence of the size distribution on the stability of the community. Our empirical study is based on a data collection of more than 25.000 fisheries hauls covering most of the European marine ecosystems (Baltic Sea, North Sea, European Atlantic Shelf and the Mediterranean Sea). We compiled long term (>20 years) time series of fish abundances in 23 distinct areas and calculated stability indicators with both the taxonomic and size classification. Our size-based approach provides new insights into the dynamics of communities, complementary to the view offered by taxonomic diversity. Knowing the importance of size distribution in the stability of fish community could provide relevant advices for marine ecosystem based management

    Climate and fishing steer ecosystem regeneration to uncertain economic futures

    Get PDF
    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socioeconomic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million E per year, which equals half of today’s maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate chang
    corecore