129 research outputs found
Blue-light reception through quaternary transitions
Sensory photoreceptors absorb light via their photosensor modules and trigger
downstream physiological adaptations via their effector modules. Light
reception accordingly depends on precisely orchestrated interactions between
these modules, the molecular details of which often remain elusive. Using
electron-electron double resonance (ELDOR) spectroscopy and site-directed spin
labelling, we chart the structural transitions facilitating blue-light
reception in the engineered light-oxygen-voltage (LOV) histidine kinase YF1
which represents a paradigm for numerous natural signal receptors. Structural
modelling based on pair-wise distance constraints derived from ELDOR pinpoint
light-induced rotation and splaying apart of the two LOV photosensors in the
dimeric photoreceptor. Resultant molecular strain likely relaxes as left-
handed supercoiling of the coiled-coil linker connecting sensor and effector
units. ELDOR data on a photoreceptor variant with an inverted signal response
indicate a drastically altered dimer interface but light-induced structural
transitions in the linker that are similar to those in YF1. Taken together, we
provide mechanistic insight into the signal trajectories of LOV photoreceptors
and histidine kinases that inform molecular simulations and the engineering of
novel receptors
A structural model for the full-length blue light-sensing protein YtvA from Bacillus subtilis, based on EPR spectroscopy
A model for the full-length structure of the blue light-sensing protein YtvA
from Bacillus subtilis has been determined by EPR spectroscopy, performed on
spin labels selectively inserted at amino acid positions 54, 80, 117 and 179.
Our data indicate that YtvA forms a dimer in solution and enable us, based on
the known structures of the individual domains and modelling, to propose a
three-dimensional model for the full length protein. Most importantly, this
includes the YtvA N-terminus that has so far not been identified in any
structural model. We show that our data are in agreement with the crystal
structure of an engineered LOV-domain protein, YF1, that shows the N-terminus
of the protein to be helical and to fold back in between the β-sheets of the
two LOV domains, and argue for an identical arrangement in YtvA. While we
could not detect any structural changes upon blue-light activation of the
protein, this structural model now forms an ideal basis for identifying
residues as targets for further spin labelling studies to detect potential
conformational changes upon irradiation of the protein
Signal transduction in light-oxygen-voltage receptors lacking the adduct- forming cysteine residue
Light–oxygen–voltage (LOV) receptors sense blue light through the
photochemical generation of a covalent adduct between a flavin-nucleotide
chromophore and a strictly conserved cysteine residue. Here we show that,
after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes
light-induced dimerization and signalling because of flavin photoreduction to
the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV
histidine kinase YF1 to the NSQ modulates activity and downstream effects on
gene expression. Signal transduction in both proteins hence hinges on flavin
protonation, which is common to both the cysteinyl adduct and the NSQ. This
general mechanism is also conserved by natural cysteine-less, LOV-like
regulators that respond to chemical or photoreduction of their flavin
cofactors. As LOV proteins can react to light even when devoid of the adduct-
forming cysteine, modern LOV photoreceptors may have arisen from ancestral
redox-active flavoproteins. The ability to tune LOV reactivity through
photoreduction may have important implications for LOV mechanism and
optogenetic applications
Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics. The bacteriophytochrome DrBphP from Deinococcus radiodurans shows high sequence homology to the histidine kinase Agp1 from Agrobacterium fabrum but lacks kinase activity. Here, the authors structurally and biochemically analyse DrBphP and Agp1, showing that DrBphP is a light-activatable phosphatase.Peer reviewe
Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine
In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins
Why do house-hunting ants recruit in both directions?
To perform tasks, organisms often use multiple procedures. Explaining the breadth of such behavioural repertoires is not always straightforward. During house hunting, colonies of Temnothorax albipennis ants use a range of behaviours to organise their emigrations. In particular, the ants use tandem running to recruit naïve ants to potential nest sites. Initially, they use forward tandem runs (FTRs) in which one leader takes a single follower along the route from the old nest to the new one. Later, they use reverse tandem runs (RTRs) in the opposite direction. Tandem runs are used to teach active ants the route between the nests, so that they can be involved quickly in nest evaluation and subsequent recruitment. When a quorum of decision-makers at the new nest is reached, they switch to carrying nestmates. This is three times faster than tandem running. As a rule, having more FTRs early should thus mean faster emigrations, thereby reducing the colony’s vulnerability. So why do ants use RTRs, which are both slow and late? It would seem quicker and simpler for the ants to use more FTRs (and higher quorums) to have enough knowledgeable ants to do all the carrying. In this study, we present the first testable theoretical explanation for the role of RTRs. We set out to find the theoretically fastest emigration strategy for a set of emigration conditions. We conclude that RTRs can have a positive effect on emigration speed if FTRs are limited. In these cases, low quorums together with lots of reverse tandem running give the fastest emigration
Non-Markovian polymer reaction kinetics
Describing the kinetics of polymer reactions, such as the formation of loops
and hairpins in nucleic acids or polypeptides, is complicated by the structural
dynamics of their chains. Although both intramolecular reactions, such as
cyclization, and intermolecular reactions have been studied extensively, both
experimentally and theoretically, there is to date no exact explicit analytical
treatment of transport-limited polymer reaction kinetics, even in the case of
the simplest (Rouse) model of monomers connected by linear springs. We
introduce a new analytical approach to calculate the mean reaction time of
polymer reactions that encompasses the non-Markovian dynamics of monomer
motion. This requires that the conformational statistics of the polymer at the
very instant of reaction be determined, which provides, as a by-product, new
information on the reaction path. We show that the typical reactive
conformation of the polymer is more extended than the equilibrium conformation,
which leads to reaction times significantly shorter than predicted by the
existing classical Markovian theory.Comment: Main text (7 pages, 5 figures) + Supplemantary Information (13 pages,
2 figures
Ants in a Labyrinth: A Statistical Mechanics Approach to the Division of Labour
Division of labour (DoL) is a fundamental organisational principle in human
societies, within virtual and robotic swarms and at all levels of biological
organisation. DoL reaches a pinnacle in the insect societies where the most
widely used model is based on variation in response thresholds among
individuals, and the assumption that individuals and stimuli are well-mixed.
Here, we present a spatially explicit model of DoL. Our model is inspired by
Pierre de Gennes' 'Ant in a Labyrinth' which laid the foundations
of an entire new field in statistical mechanics. We demonstrate the emergence,
even in a simplified one-dimensional model, of a spatial patterning of
individuals and a right-skewed activity distribution, both of which are
characteristics of division of labour in animal societies. We then show using a
two-dimensional model that the work done by an individual within an activity
bout is a sigmoidal function of its response threshold. Furthermore, there is an
inverse relationship between the overall stimulus level and the skewness of the
activity distribution. Therefore, the difference in the amount of work done by
two individuals with different thresholds increases as the overall stimulus
level decreases. Indeed, spatial fluctuations of task stimuli are minimised at
these low stimulus levels. Hence, the more unequally labour is divided amongst
individuals, the greater the ability of the colony to maintain homeostasis.
Finally, we show that the non-random spatial distribution of individuals within
biological and social systems could be caused by indirect (stigmergic)
interactions, rather than direct agent-to-agent interactions. Our model links
the principle of DoL with principles in the statistical mechanics and provides
testable hypotheses for future experiments
Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains
Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20–100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient β-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events
- …