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Signal transduction in light–oxygen–voltage
receptors lacking the adduct-forming cysteine
residue
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Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation

of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved

cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein

Vivid still undergoes light-induced dimerization and signalling because of flavin photo-

reduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV

histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene

expression. Signal transduction in both proteins hence hinges on flavin protonation, which

is common to both the cysteinyl adduct and the NSQ. This general mechanism is also

conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photo-

reduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the

adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral

redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may

have important implications for LOV mechanism and optogenetic applications.
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F
lavin-binding proteins widely occur across all kingdoms of
life where they play vital roles in many different aspects of
metabolism1–3. Beyond their crucial function in redox

catalysis, flavin-binding proteins also serve as signal receptors
for redox potential, partial oxygen pressure and blue light1–3.
Flavin-based sensory photoreceptors fall into three major classes:
light, oxygen and voltage sensing (LOV) proteins; BLUF proteins
(sensors of blue light using flavin adenine dinucleotide (FAD))
and photolyases/cryptochromes (PL/CRY)1–3. The utility of flavin
as a chromophore derives from the ability of light to facilitate
interconversion between excited states and three ground
oxidation states: namely the fully oxidized quinone, the partially
reduced semiquinone radical and the fully reduced hydroquinone
(HQ). Of these, the oxidized quinone-bound form often serves as
the dark-adapted state because of its strong absorption in the blue
spectral region.

LOV photoreceptors occur throughout archaea, bacteria,
protists, fungi and plants, and regulate phototropism, chloroplast
movement, stomatal opening, virulence, stress response, circadian
rhythms and other physiological responses1–4. In the well-
characterized LOV photocycle1–3, blue-light absorption drives
formation of a covalent adduct between a strictly conserved,
active-site Cys residue and the C4a atom of the flavin
isoalloxazine ring (either FAD; or flavin mononucleotide
(FMN))2,5 (Fig. 1a). In at least one case, a neutral flavin
semiquinone radical intermediate has been detected6, suggesting
that bond formation proceeds via rapid reduction of the flavin by
the Cys thiol to form a neutral radical pair (FMNH�—�S-Cys)
and subsequent radical recombination5–7; however, more recent
spectroscopic studies could not identify build-up of such a species
on the tens of ns-to-ms time scale and thereby concluded that if a
flavin radical intermediate forms it must react faster than the rate
by which it is produced8. Nonetheless, effective reduction of the
flavin ring, by either adduct or radical formation greatly increases
the pKa of N5, thus promoting its protonation9. In response to
this protonation, a nearby glutamine residue, conserved in most
LOV proteins, undergoes a 180� flip of its amide side chain to
adjust hydrogen-bonding interactions10–12. Additional changes in
hydrogen bonding propagate through the core a/b PAS-domain
fold of the LOV domain to N-cap and C-cap regions that pack
against the b-sheet on the side opposing the flavin-binding
pocket1–3. Alteration of the structure and dynamics of these cap
regions affect oligomeric state and the activity of output
modules1,3. However, it is not clear whether adduct formation
itself is the dominant factor in generating downstream signalling
responses, or if N5 protonation alone can suffice. Despite the
paramount importance of the conserved cysteine residue in the
canonical LOV photocycle, at least some LOV photoreceptors
apparently retain biological activity even after substitution of the
Cys thiol for non-reactive side chains12–15. Although a
rationalization of these findings has remained elusive, it is well-
established that LOV domains devoid of this cysteine can
undergo photoreduction to a neutral semiquinone (NSQ) state
with N5 protonated16–20, thus raising the question as to whether
the NSQ triggers downstream signalling.

Taking the two well-characterized LOV photoreceptors Vivid
(VVD)12,13 and YF121, we demonstrate that the NSQ state indeed
mediates wild-type (WT)-like signalling responses and that LOV
photoreceptors devoid of the conserved adduct-forming cysteine
are thus fully capable of light-dependent signal transduction.
Furthermore, sequence analyses reveal natural LOV-like proteins
that lack the adduct-forming cysteine residue. We demonstrate
that one such protein from archaeal halobacteria binds flavin
nucleotides and undergoes chemical- and photo-reduction
processes that couple to changes in protein conformation.
Our results lend new insight into photoreception and signal

transduction by LOV photoreceptors, bear on LOV domain
application as optogenetic tools2,22 and suggest an intriguing
possibility for the evolutionary origin of the widespread LOV
photoreceptor family.

Results
Photoconversion of VVD lacking the adduct-forming Cys.
The replacement of the active-site Cys108 of VVD by Ala was
produced in the context of VVD-II, which lacks the first
36 N-terminal unstructured residues and carries two other sub-
stitutions (M135I:M165I) that are known to stabilize the VVD
light-adapted state12,23. The Met substitutions extend the adduct
lifetime of VVD-II by 10-fold compared with WT VVD and
upshift the flavin redox potential by removing two electron-rich
sulfur residues that pack against the re-face of the flavin12,23.
Accordingly, VVD-II purifies from overexpression in Escherichia
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Figure 1 | Photochemistry of LOV photoreceptors and structure of VVD.

(a) In canonical LOV photoreceptors, light excitation of the flavin leads

to a covalent adduct between the C4a atom of the flavin ring and an active-

site Cys thiol (residues 108 and 62 in VVD and YF1, respectively).

Coincident protonation of the flavin atom N5 induces a flip of the amide

side chain of a conserved Gln residue (residues 182 and 123 in VVD and

YF1, respectively). Resultant changes in hydrogen bonding propagate

through the LOV photoreceptor, for example, to an N-cap region in the case

of VVD. (b) The absence of the adduct-forming cysteine promotes

photoreduction of the LOV flavin to the neutral semiquinone (NSQ). As N5

of the NSQ is also protonated, signals could be relayed in a manner

corresponding to that in the cysteinyl adduct in a. (c) Structure of the light-

adapted VVD dimer (3RH8)12. The flavin rings (tan) in the constituent

subunits (dark and light green ribbons) are separated by B37 Å at their

centroids. An exchange of N-terminal latches associates the N-caps

(yellow), with Tyr40 making a key contact across the dimer interface.
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coli as a pale green protein indicative of partial reduction to the
NSQ (Supplementary Fig. 1b). Introduction of the C108A
substitution into VVD-II yielded VVD-III (VVD D36,
C108A:M135I:M165I), which purifies as a much darker green
protein than VVD-II (Supplementary Fig. 1b). Different flavin
redox states separate when the protein is passed through a
size-exclusion chromatography (SEC) column (Supplementary
Fig. 1d), with the blue-coloured, NSQ-containing protein eluting
as a dimer and the yellow-coloured, oxidized protein eluting as a
monomer. Intriguingly, this behaviour is highly reminiscent of
the homodimerization of WT VVD on blue-light-induced adduct
formation12,24. On SEC, the adduct form of WT VVD elutes at a
larger volume due to a rapidly exchanging equilibrium between
dimer and monomer24. Light-induced VVD dimerization is
critical for the protein to mediate photoadaptation in
Neurospora11,12.

Exposure to a 448-nm laser (30 mW) reduces the VVD-III
FAD quinone to the NSQ over the course of 5 min (Fig. 2a and
Supplementary Fig. 2a). The FAD then recovers completely to the
oxidized form within B3 h in the dark under aerobic conditions
(Fig. 2a and Supplementary Fig. 2b). By following the loss of
oxidized flavin fluorescence and formation of the NSQ by
absorption spectroscopy, the relative quantum efficiency of

reduction compared with adduct formation in WT VVD was
determined to be 0.11±0.07. The unprotonated anionic semi-
quinone was not observed on this time scale, and two isosbestic
points (347 and 497 nm) in the forward photoreduction indicate
the presence of only oxidized FAD and the NSQ (Supplementary
Fig. 2a). Formation of the NSQ implies that flavin N5 protonates
readily on reduction of the isoalloxazine ring (Fig. 1b). The
mechanism for photoreductive quenching of VVD-III to the NSQ
is currently unclear, but does not appear to require oxidation of
aromatic residues within the protein as substitution of all
aromatic residues to Phe has little effect on the rate of VVD-III
photoreduction.

When subjected to SEC, the light-adapted NSQ state of
VVD-III elutes as a dimer, whereas the dark-adapted oxidized
quinone state remains monomeric (Fig. 2b). Mixtures of the dark
and light states elute at an intermediate volume, which suggests
that either a NSQ subunit can associate weakly with a quinone
subunit or that these oxidation states rapidly equilibrate within
the population (Fig. 2b). Substituting the conserved Gln182 that
interacts with flavin N5 to Leu (cf. Fig. 1a,b) does not affect
photoreduction but completely prevents dimerization (Fig. 2c).

To confirm that the NSQ-containing VVD-III dimer has the
same structure as that of the Cys-adduct dimer, we introduced the
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Figure 2 | Photoreduced VVD-III forms the same light-adapted dimer as wild-type VVD. (a) Absorption spectra of VVD-III in its dark-adapted state

(black) and neutral semiquinone state after photoreduction for 5 min with a 448-nm 30 mW laser (dark blue) followed by reoxidation after 170 min at

ambient conditions (light blue). (b) Size-exclusion chromatography (SEC) of dark-adapted (black) and light-adapted VVD-III (blue) indicates dimer

formation in the NSQ state. A 1:1 mixture of dark-adapted and light-adapted states produces intermediate peaks (red), indicative of the exchangeable

nature of the VVD dimer and perhaps radical equilibration on the SEC time scale. (c,d) SEC traces of dark-adapted (black) and light-adapted (blue) VVD-

III:Q182L (c) and VVD-III:Y40E (d) indicate no change in the oligomeric state of either protein on photoreduction to the NSQ. Q182L and Y40E traces have

different baselines because different SEC columns were used. (e,f) Magnetic dipolar coupling between two radical flavin states was detected by DEER

spectroscopy in illuminated VVD-III. (e) Raw time-domain DEER data (blue) with baseline (purple) and after baseline-subtraction (red) reveal a clear

dipolar oscillation that produces a sharply peaked distance distribution P(r) of the separated spins at B37 Å (f). The smaller peak in P(r) at longer distance

is a reconstruction artifact. The spin separation agrees well with that predicted by the light-adapted dimer of VVD (Fig. 1c).
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Y40E mutation (VVD-III:Y40E), which disrupts the dimeric
interface necessary for signalling12. Indeed, introduction of Y40E
in VVD-III:Y40E abrogates light-induced dimer formation, and
both the light-adapted NSQ and dark-adapted oxidized quinone
states elute from SEC as monomers (Fig. 2d). To further
investigate the structure of the VVD-III light-adapted dimer,
we applied double electron–electron resonance (DEER)
spectroscopy, which measures the magnetic dipolar coupling
between remote electron spins and hence their distance of
separation. Modulation of the spin-echo amplitude
in photoreduced VVD-III shows a substantial oscillation
characteristic of two interacting spins (Fig. 2e). The derived
distance distribution features a sharp peak at B37 Å (Fig. 2f),
which matches the expected separation of the flavin radicals
based on the crystal structure of the light-adapted VVD dimer12

(cf. Fig. 1c). Thus, photoreduction of VVD-III to the NSQ
produces the same light-adapted dimer as the cysteinyl-flavin
adduct in the WT protein.

Signal transduction in YF1 lacking the adduct-forming Cys. To
assess whether the NSQ state can generally activate signalling in
LOV proteins, we investigated photoreduction of the LOV
histidine kinase YF1, which derives from the fusion of the LOV
module of Bacillus subtilis YtvA to the histidine-kinase effector
module of Bradyrhizobium japonicum FixL21. As a well-
characterized paradigm, YF1 is emblematic of numerous
natural proteins in which a LOV or PAS module regulates a
histidine kinase25,26. Compared with VVD, YF1 is of different
origin (prokaryotic versus eukaryotic), utilizes FMN instead of
FAD, and possesses different effector output27,28. Like VVD, the
C62A variant of YF1 undergoes photoreduction with blue light to
the NSQ without population of the anionic semiquinone radical
(Supplementary Fig. 3a). Addition of reductants, such as TCEP
(Tris(2-carboxyethyl)phosphine hydrochloride), greatly enhances
the rate and yield of NSQ formation. Once blue-light illumination
ceases, the NSQ oxidizes back to the quinone state in a largely
monophasic process over the course of several hours
(Supplementary Fig. 3b).

To assess whether photoreduction of YF1 C62A to the NSQ
suffices to elicit WT-like downstream signalling responses, we
capitalized on efficient assays that allow probing YF1 signalling
in vivo and in vitro. Combined with the cognate response
regulator FixJ, YF1 forms a two-component system that drives
blue-light-repressed gene expression of the red-fluorescent
reporter DsRed21,28. When incubated in the dark, E. coli
cultures harbouring the pDusk plasmid28 display readily
discernible DsRed fluorescence due to FixJ phosphorylation by
YF1; when cultures are incubated under saturating blue light
(100 mW cm� 2, 470 nm), fluorescence is diminished by about
15-fold owing to dephosphorylation of FixJ by YF1 (Fig. 3a,b).
Replacement of Cys62 in YF1 by alanine slightly reduces DsRed
expression in the dark; but, similar to WT, blue-light illumination
induces a large (60%) repression of the DsRed fluorescence
signal (Fig. 3a,b). YF1 and YF1 C62A show remarkably similar
light-dose dependencies with half-maximal light doses, ED50,
of (2.1±0.6)mW cm� 2 and (2.0±0.7)mW cm� 2, respectively
(Fig. 3c). Evidently, the C62A variant of YF1 is still capable of
mediating light-dependent signal transduction in vivo, albeit the
response is partially attenuated.

Removal of the adduct-forming cysteine in LOV proteins
not only promotes photoreduction and enhances the flavin
fluorescence29, but also renders the flavin a photosensitizer
for the generation of singlet oxygen30–32. Blue-light-driven
generation of reactive oxygen species (ROS) might thus
interfere with the two-component system by causing rupture of
the labile acid anhydride bond in phospho-FixJ and concomitant

deactivation of gene expression. To confirm that YF1 C62A does
not incapacitate FixJ through ROS production, we investigated
the H22P mutant of YF1 that shows an inverted response to
light27,33. In contrast to the WT, blue-light illumination of the
H22P variant stimulates reporter gene expression by about
10-fold, that is, blue light induces a gain-of-function (Fig. 3a–c).
Introduction of the C62A mutation into the YF1 H22P inverter
variant has no effect on the DsRed expression levels in the dark.
When incubated under blue light, DsRed expression levels for
YF1 H22P:C62A increase about sixfold to B60% of the value
seen for YF1 H22P in the light. Interestingly, YF1 H22P:C62A
showed a lower light sensitivity than YF1 H22P, and higher light
doses were required for saturation (Fig. 3a–c). Thus, YF1
H22P:C62A is also capable of blue-light signal transduction
without the active-site Cys residue, and because this variant
increases gene expression, this effect cannot be due to ROS
generation.

We sought evidence that regulation of gene expression by the
cysteine-devoid YF1 variants correlates with population of the
NSQ in vivo, and conducted whole-cell electron-spin resonance
(ESR) spectroscopy on the above E. coli cultures. Dark-grown and
light-grown cultures of YF1 and YF1 H22P, either with or
without the adduct-forming cysteine residue, were rapidly frozen
in liquid nitrogen. Continuous-wave ESR spectra were recorded
and corrected for signals arising from endogenous E. coli cell
constituents as determined from control cultures not expressing
any YF1 variants (Fig. 3d,e). The ESR spectra of YF1 and YF1
H22P with the adduct-forming Cys residues intact revealed no
significant accumulation of flavin radicals above background
under either dark or light conditions. By contrast, the cysteine-
devoid variants YF1 C62A and YF1 H22P:C62A produced
significantly elevated levels of flavin radical species under blue
light but not in the dark. Note that the width of these signals
(B10 G) is consistent with the broadening expected from the
hyperfine interactions of flavin radicals (Fig. 3e). These data
suggest that photoreduction to the NSQ states of YF1 C62A and
YF1 H22P:C62A readily takes place inside living E. coli cells and
correlates with downstream signalling.

To further verify these in vivo effects, we also directly measured
the ability of YF1 to regulate FixJ binding to DNA. Once YF1
phosphorylates FixJ, phospho-FixJ assembles into a homodimer
and binds to the DNA substrate. In electrophoretic mobility shift
assays (EMSA), the resultant complex migrates more slowly than
the free DNA substrate (Fig. 3f). In the dark, YF1 has net kinase
activity, FixJ is phosphorylated and the DNA is in complex; by
contrast, under blue light, YF1 has net phosphatase activity21, FixJ
is dephosphorylated, and no DNA gel shift is observed. For YF1
C62A, an upshift of the DNA band is seen in the dark, indicating
activity as a net kinase. Under blue-light conditions, most of the
DNA is present in its free form and only a small portion is in
complex with FixJ. As found in vivo, YF1 H22P shows the
inverted signal response compared with YF1—an upshift of the
DNA band indicative of FixJ phosphorylation under blue-light
illumination, but not in the dark. Interestingly, DNA binding of
FixJ induced by H22P:C62A was only observed in the light and in
the presence of a ROS scavenger system (consisting of catalase,
glucose and glucose oxidase). Apparently, under these conditions,
YF1 H22P:C62A does generate ROS that can interfere with the
FixJ response. Taken together, the in vitro results are in
agreement with the in vivo findings and indicate that cysteine-
devoid YF1 variants are capable of signal transduction on
photoreduction to the NSQ.

Natural LOV-like proteins lacking the adduct-forming Cys.
The observation that photoreduction elicits WT-like signalling
responses in two different LOV proteins devoid of the
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adduct-forming Cys residue suggested that related proteins might
occur naturally. A BLAST sequence search in Genbank for
LOV-like proteins that contain all residues strictly conserved
among LOV domains (see Methods) except for the adduct-
forming cysteine revealed ca. 70 entries with this Cys replaced by
one of several other residues, including Ala, His and Pro (Fig. 4b
and Supplementary Fig. 4a). Cysteine-devoid LOV-like domains,
denoted LOV*, are found in proteins with varied architectures
(Supplementary Data 1). Among these proteins, we focused on a
LOV* domain from a halobacterial archaea that has relatively
close homology to VVD and contains an unreactive Pro residue
in place of the adduct-forming Cys. This LOV* domain is a
component of a much larger protein known as bacterio-opsin
activator (BAT)34, which also contains a response-regulator
receiver domain, a GAF domain and a helix-turn-helix DNA-
binding module. Notably, BAT-LOV* contains no Cys or Met
residues, with the position of the adduct-forming Cys occupied by
Pro (Fig. 4b). When overexpressed in E. coli, BAT-LOV* bound
modest amounts of flavin but could be reconstituted with either
FAD, FMN or riboflavin after incubation with excess cofactor
(Supplementary Fig. 5b). Although BAT-LOV* does not contain
an insertion usually found to accommodate the adenosine moiety
of FAD-binding LOV domains11 (Fig. 4b), reconstitution with
FAD yielded no noticeable difference in photoreduction or
behaviour on SEC compared with reconstitution with FMN

(Supplementary Figs 5c and 6a). On photoreduction,
reconstituted BAT-LOV* accumulated the NSQ with low yield
compared with VVD-III (Fig. 5a and Supplementary Fig. 6a).
Moreover, photoreduction is nearly two orders of magnitude
slower than for VVD-III, and the corresponding rates can only be
moderately increased by adding external reductive quenchers,
such as dithiothreitol (DTT) (Fig. 5a and Supplementary Fig. 6a).
A small lag phase for BAT-LOV* photoreduction, not seen with
VVD-III, depends on the presence of oxygen (Supplementary
Fig. 6b). Low fluorescence quantum yields for BAT-LOV*
compared with VVD-III (Table 1) indicate a much reduced
lifetime of the initial S1 photo-excited state, possibly owing to
rapid reversible reductive quenching from internal redox-active
residues. Inspection of a BAT-LOV* homology model (Fig. 4a)
identified two Tyr residues and one Trp residue that reside closer
to the flavin than any aromatic residues in VVD (Fig. 4b).
Substitution of the Tyr residues to Phe (BAT-II) produced little
change in fluorescent yields or NSQ accumulation (Table 1).
However, additional substitution of Trp172 to Phe (BAT-III)
caused a large increase in fluorescent lifetime and photoreduction
rates that are similar to those of VVD-III (Table 1, Fig. 5b,
Supplementary Fig. 6a). Notably, most BAT-LOV* homologues
contain a Phe at the position of Trp172 (Supplementary Fig. 4a),
and thus would be expected to have similar photoreduction yields
as the BAT-III variant examined here.

D
ar

k

Li
gh

t

D
ar

k

Li
gh

t

D
ar

k

Li
gh

t

D
ar

k

Li
gh

t

D
ar

k

Li
gh

t

D
ar

k

Li
gh

t

D
ar

k

Li
gh

t

D
ar

k

Li
gh

t

Y
F

1

YF1In
-C

el
l E

S
R

 s
ig

na
l

(a
.u

.)
 d

ar
k

In
-C

el
l E

S
R

 s
ig

na
l

(a
.u

.)
 li

gh
t

F
lu

or
es

ce
nc

e 
(a

.u
.)

F
lu

or
es

ce
nc

e 
(a

.u
.)

YF1 Variant

YF1 variant

330 340 350 360 330 340 350 360

0

0.5

1

0
0 50 100 150

Light intensity (μW cm–2)

0.5

1

Magnetic field (mT) Magnetic field (mT)

H
22

P

H22P

C
62

A

C62A

H
22

P
:

C
62

A

Y
F

1

H
22

P

C
62

A

H
22

P
:

C
62

A

YF1 H22PC62A H22P:
C62A

H22P:C62A

YF1

H22P

C62A

H22P:C62A

YF1 Variant

FixJ.

DNA

Free
DNA
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Cultures of YF1 WT and variants C62A, H22P and H22P:C62A were grown in 5 ml under dark and blue-light conditions (470 nm, 100 mWcm� 2). DsRed

expression is evident by red colouration of cultures. (b) DsRed fluorescence per OD600 was measured for the cultures in a under blue-light (white bars)

and dark conditions (black bars). (c) The experiment in b was repeated at varying blue-light intensities (470 nm) between 0 and 150 mWcm� 2.

YF1 (filled circle) and YF1 C62A (filled square) have nearly the same light-dose dependencies with half-maximal light doses, ED50, of (2.1±0.6) mWcm� 2

and (2.0±0.7)mWcm� 2, respectively. By contrast, YF1 H22P (empty circle) shows a higher half-maximal dose of (24.6±5.8)mWcm� 2 that is increased

to above 100 mWcm� 2 for YF1 H22P:C62A (empty square). The precise ED50 value for YF1 H22P:C62A cannot be determined due to cytotoxicity of

blue-light doses higher than 150 mWcm� 2. All data in b,c represent mean±s.d. of biological triplicates. (d,e) E. coli cultures from a were analysed by

whole-cell ESR spectroscopy under the same conditions used in a–c. Spectra recorded for dark-adapted (d) or blue-light-adapted (e) cultures were

corrected for the E. coli background ESR signal. Significant population of flavin radicals above background is only observed for the cysteine-devoid variants

YF1 C62A and YF1 H22P:C62A under blue-light illumination. (f) In vitro activity measurements of YF1 variants by electrophoretic mobility shift assays

(EMSA). In its dark-adapted state, YF1 phosphorylates FixJ, which then binds a rhodamine-labelled DNA substrate, retarding migration of the resultant

phospho-FixJ:DNA complex in the polyacrylamide gel. In its light-adapted state, YF1 acts as a phosphatase, FixJ is not phosphorylated and no DNA upshift

is observed. The inverter variant YF1 H22P shows the opposite behaviour with an upshift under blue light but not in the dark.
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Although photoreduction of WT BAT-LOV* is ineffective, the
protein readily undergoes complete chemical reduction to the HQ
(Fig. 5a and Supplementary Fig. 7). Reduced BAT-LOV* elutes on
SEC with a profile shifted from that of the oxidized dark-state
protein (Fig. 5d). When flavin is removed from BAT-LOV*,
a similar shift on SEC results, suggesting that reduction
destabilizes flavin binding. Nevertheless, the reduced flavin
remains loosely associated with BAT-LOV* as the compact state
and spectrum for the quinone-bound protein partially recover
after reoxidation in air (Fig. 5d and Supplementary Fig. 7). WT
BAT-LOV* does not shift on SEC with light exposure owing to
inefficient photoreduction; however, the more readily photo-
reduced BAT-III elutes at the same position as chemically
reduced BAT-LOV*, while retaining a monomeric molecular
mass (Fig. 5d and Supplementary Fig. 8a,b). Thus, both reduction
processes influence protein conformation and destabilize flavin
binding in the isolated LOV* domains. BAT-III recovers fully
after reoxidation in aerobic solution, producing a spectrum for
oxidized bound flavin (Supplementary Fig. 6d).

We attempted to convert BAT-LOV* to a traditional LOV
mechanism by mutating the active-site Pro residue to Cys. The
P188C variant does not undergo conversion to a traditional
adduct state with its characteristic 390-nm absorption peak, but
the variant is much more readily photoreduced than WT,
rivalling the reactivity of BAT-III (Fig. 5c and Supplementary
Fig. 6a). Interestingly, the P188C appears to form the HQ directly
with little NSQ intermediate observed on this time scale. Unlike
the C4a adduct in canonical LOV domains, the light-adapted
state of the P188C variant can be rapidly chemically oxidized to

the quinone state, after which the flavin partially dissociates from
the protein (Supplementary Fig. 9). A control Cys substitution
distant from the flavin (N252C) increases photoreduction only
marginally (Supplementary Fig. 6a).

Discussion
Cysteine-adduct formation causes substantial changes to the LOV
flavin pocket that include electronic redistribution in the cofactor,
bond strain and protonation of the flavin N5 atom2,3,35. It has
been challenging to assign the relative impact of these various
factors on signal propagation. In this study, we partially separate
these events and directly evaluate the role of the cysteinyl-flavin
bond in signalling. As we show for the paradigm LOV
photoreceptors VVD and YF1, blue light promotes reduction to
the NSQ state in the absence of the adduct-forming cysteine.
Corresponding photoreduction has been reported for several
other LOV domains in which the adduct-forming cysteine has
been replaced16–18,20,36. We now demonstrate that LOV NSQ
states are biologically functional in that they elicit downstream
signalling responses largely equivalent to those for the Cys-adduct
states of the parental photoreceptors. In particular, photoreduced
VVD-III associates into the same light-adapted dimer as WT
VVD. Structural studies of VVD in its dark-adapted and
signalling states indeed suggest that conformational changes
important for promoting dimerization depend on N5
protonation12. These results are further borne out in YF1 C62A
variants that on photoreduction show qualitatively the same light
responses as the corresponding Cys-containing receptors, both in
the original context and in the context of the H22P variant that
inverts the light response. We thus conclude that flavin reduction
and protonation of the flavin N5 are sufficient for signal
transduction in these LOV domains. Our rather unexpected
findings account for several puzzling observations in LOV
photoreceptors. For example, the residual light responsiveness
of the C108A variant of VVD in repressing downstream gene
expression13 can now be explained by photoreduction to the NSQ
state. A similar mechanism is likely at play in variants of
Chlamydomonas reinhardtii phototropin 1, which were found to
elicit light responses even though the adduct-forming Cys
residues of the two LOV domains had been replaced by
mutagenesis (C57S:C250A)14,15.

The present results also bear on mechanistic studies of LOV
photoreceptors and their biotechnological application. Often,
cysteine knock-out variants are used as negative controls in LOV
photoreceptor studies; given the likelihood of activation by
photoreduction, responses from these variants should be carefully
considered. Similarly, LOV domains devoid of their adduct-
forming cysteine have found frequent use as fluorescent protein
tags and as photosensitizers for the generation of ROS29,30. As the
present results reveal, these model LOV domains may still
populate a signalling state through NSQ formation that could
have functional consequences, even in heterologous hosts. By
contrast, in other scenarios signal transduction by Cys-less LOV
variants could be desirable: for example, removal of the adduct-
forming cysteine will lower the absolute light sensitivity of LOV
photoreceptors as shown for YF1 H22P:C62A (Fig. 3c), which
may be of use in optogenetic applications22,37. As demonstrated
by BAT-III, photoreduction yields may be tuned by the location
of residues capable of reductively quenching the flavin excited-
state. Removal of the adduct-forming cysteine hence provides an
avenue towards modulating the light-driven forward reaction,
which is challenging to perturb in canonical LOV domains38.
Nonetheless, we reiterate that cysteine-devoid LOV variants come
with enhanced fluorescence and ROS generation29,30.

Our results reveal commonalities among flavin-based photo-
and redox receptors that could reflect evolutionary relationships
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(a) Homology model of BAT-LOV* bound to FAD based on sequence

similarity to YtvA. Tyr163 and Tyr247 were changed to Phe in BAT-II, with

Trp172 also changed to Phe in BAT-III. The P188C substitution (but not

N252C) affects photoreduction yields. Three Tyr residues remote from the

flavin are also shown. (b) Sequence alignment of VVD, BAT-LOV*, YtvA,

A. vinelandii NifL and E. coli Aer. Tyr residues (yellow), Trp (blue),
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indicate the secondary structure in VVD with b sheets in blue and a helices

in orange; arrows denote LOV-conserved residues, with the adduct-forming

Cys in VVD and YtvA marked by a red arrow.
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among them. In the canonical LOV photocycle, a flavin excited
triplet state reacts with the thiol group of a conserved cysteine
residue2,3,35. Bond formation likely proceeds via a redox process,
as supported by detection of a transient flavin NSQ in
C. reinhardtii phot1 LOV1 (ref. 6), by indirect arguments from
magnetic resonance experiments39,40, and by the general efficacy
of flavin photoreduction in the cysteine-devoid variants16–18,20,36.
Thus, the NSQ is a likely intermediate in generating the adduct.
The BAT-LOV* P188C variant demonstrates that Cys at the
adduct-forming position is an effective electron donor to the
photo-excited flavin. LOV signalling through the NSQ state has
intriguing parallels to signal transduction in the other flavin-
based photoreceptor classes cryptochrome and BLUF1–3.
Although controversial, there is strong evidence that the
signalling state of cryptochromes involves reduction of the FAD
to either the NSQ or anionic semiquinone states1,3,41. While the
details of BLUF photochemistry are still under intense debate, a
NSQ state may be populated transiently during the photocycle as
part of a radical-pair intermediate between the flavin and a
conserved Tyr (FADH�—�O-Tyr)42. Interestingly, removal of the
conserved Tyr allows efficient photoreduction of the BLUF

protein to the NSQ state43; moreover, this NSQ state regulates the
activity of an adenylate-cyclase effector, albeit with inverted
polarity and reduced dynamic range compared with WT.

Changes in flavin redox state affect conformation and flavin
binding in the naturally Cys-less BAT-LOV*. BAT regulates
expression of bacteriorhodopsin, a light-driven proton pump
expressed in halobacteria under conditions of high light intensity
and low oxygen levels34. A direct response to light by BAT has
been suggested34 but has not been definitively established.
BAT-LOV* shares some relationship to the flavin-binding
oxygen sensor proteins E. coli Aer44 and Azotobacter vinelandii
NifL, but its sequence is more similar to LOV domains, such as
those of VVD or YF1 (Fig. 4b). Aer, which senses O2 indirectly by
a redox response to the membrane potential44, can also act as a
photoreceptor45. BAT retains the conserved Gln for responding
to protonation changes at N5 and indeed changes conformation
on flavin reduction. The isolated BAT-LOV* domain studied here
cannot be effectively photoreduced because its excited-state
lifetime is too short, owing to reductive quenching by
neighbouring aromatic residues. However, substitution of an
unconserved Trp to its more typical occurrence of Phe generates
photoreduction yields that rival those of VVD-III. Thus, for both
BAT and possibly Aer, either chemical or light-driven flavin
reduction may trigger downstream signalling.

Our demonstration that the isolated BAT-LOV* domain binds
flavin and conformationally responds to chemical or photo-
reduction lends strength to the assertion that this module acts as
an integrated redox/light sensor in the regulation of bacteriorho-
dopsin production. The reactivity of BAT-LOV* also raises the
question as to whether ancestral LOV proteins were redox sensors
that bound flavin but did not contain an adduct-forming Cys.
Introduction of such a reactive Cys would preserve the light-
adapted state and thereby increase effective light sensitivity.
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Figure 5 | Photochemistry of BAT-LOV*. Photoreduction of recombinantly expressed, FAD-reconstituted (a) BAT-LOV* and (b) BAT-III

(Y163F:W172F:Y247F). BAT-LOV* reduces slowly to the NSQ, whereas BAT-III reduces to the NSQ much more rapidly. Chemical reduction of BAT-LOV*

with Cr:EDTA (blue) forms the HQ directly (a). (c) BAT P188C photoreduces to the HQ with little NSQ intermediate. Experiments in a–c were carried out

on similar protein concentrations. See Supplementary Fig. 6a for photoreduction rate constants. (d) SEC elution profile of BAT-LOV* and variants. Ambient

light exposure of BAT-LOV* produces no shift on SEC (WT Dark compared with WT Light); however, chemical reduction (WT Cr:EDTA) results in a shift to

an extended conformation that is similar to that of the protein stripped of flavin by anion exchange chromatography (WT no FAD). Reoxidation partially

reforms the compact state (WT Cr:EDTA Recover). Photoreduction of BAT-III forms a state similar to that observed for reduced WT BAT-LOV* (BAT-III

Photoreduced). Multi-angle light scattering confirmed that BAT-LOV* remained a monomer in the dark and with ambient light exposure; loss of FAD

binding also does not alter the oligomeric state of BAT-III (Supplementary Fig. 8a,b).

Table 1 | Relative quantum yield of fluorescence for LOV
variants.

VVD-III �1.00
BAT-LOV* 0.08±0.02
BAT-LOV* N252C 0.10±0.02
BAT-II Y163F:Y247F 0.08±0.03
BAT-III Y163F:Y247F:W172F 0.58±0.13

BAT, bacterio-opsin activator; LOV, light–oxygen–voltage; VVD, vivid.
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Increased photoreduction yields made possible by a neighbouring
Cys donor, as we observe with BAT-LOV* P188C, may have been
an intermediate step in the generation of an adduct mechanism.
Structural changes that then promoted bond formation would
have made photoreception less susceptible to changes in redox
potential. As a result, Cys incorporation could have rapidly
disseminated due to its utility for photosensing. It may be no
accident that the flavin chromophores of certain LOV photo-
receptors have redox potentials in the physiologically relevant
range46. Thus, the division between photosensor and redox
sensor may be small, particularly for flavoproteins in which the
polypeptide responds to changes in the flavin redox state, whether
they be generated chemically or by light.

Methods
Molecular biology and protein expression. VVD constructs were cloned into
pET28a vectors and overexpressed in E. coli BL21(DE3) cells as previously
described11,12. Expression of VVD variants was induced with 100mM isopropyl
b-D-1-thiogalactopyranoside (IPTG) for 20 h at 17 �C under constant light.
Proteins were purified by Ni:NTA affinity chromatography, followed by SEC on
HiLoad 26/60 Superdex 75 or 200 prep grade columns with 50 mM Hepes (pH 8),
150 mM NaCl, 10% (v/v) glycerol.

Site-directed mutants of YF1 were generated in the background of the
expression plasmid pET-41a-YF1 (ref. 27) via the QuikChange protocol
(Invitrogen, Life Technologies GmbH). For assaying YF1 activity in vivo,
corresponding mutants were also introduced into the reporter plasmid
pDusk-myc-DsRed27,28. Purification of YF1 WT and site-specific mutants was
carried out as described previously27. Briefly, expression in E. coli BL21 CmpX13
cells47 was induced with 1 mM IPTG for 4 h at 37 �C. Proteins were purified by
Ni:NTA affinity chromatography and dialysed into storage buffer (10 mM
Tris-HCl (pH 8.0), 10 mM NaCl, 10% (v/v) glycerol). Protein concentration was
determined by absorption measurements with an Agilent 8453 UV–vis
spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) using an
extinction coefficient at 450 nm of 12,500 M� 1 cm� 1. Full-length FixJ was
expressed and purified as previously21, with the exception that the N-terminal His6

affinity tag was not cleaved off. Protein concentration was calculated using an
extinction coefficient of 4,860 M� 1 cm� 1 at 280 nm (ref. 21).

The gene from Halorubrum hochstenium (ATCC 700873) BAT, residues
141–275, was synthesized by Biomatik in Bluescript (pBSKþ Simple), and was
cloned into pET28a via restriction with NdeI and XhoI. The protein was
overexpressed with an N-terminal His6 tag and purified from E. coli BL21(DE3)
cells as described for VVD, except that after induction expression was executed at
37 �C for 3 h under constant light. After SEC, samples were further purified by
HiPrep Q XL 16/10 to remove endogenous flavin. Samples were incubated with free
flavin nucleotide in a buffer containing 0.5 M NaCl for at least 12 h. Unbound
flavin was removed by buffer exchange through 10 kDa cutoff centrifugal filters
(Amicon). Mutant variants of BAT were prepared by site-directed mutagenesis.

The identity of all constructs was confirmed by DNA sequencing at the
Biotechnology Resource Center of Cornell University or by LGC Genomics
(Berlin, Germany).

Absorption and fluorescence spectroscopy. Photoreduced species of VVD and
BAT were monitored by irradiating dark-state samples with 448-nm diode laser
light (30 mW; World Star Tech) perpendicular to the observation beam. Full
spectra were collected on an Agilent 8453 diode-array spectrophotometer as a
function of time. In kinetics mode, data were obtained by monitoring samples at
450 nm with a cycle time of 0.5–1.0 s under temperature control. Traces were
normalized and fit with MATLAB (The MathWorks Inc., Natick, MA, USA) to
equation (1)

yðtÞ ¼ Að1� e� k1ðt� t0ÞÞ þBð1� e� k2ðt� t0ÞÞ þ y0 ð1Þ
where A, B, y0 are coefficients, t0 is the x-axis offset, and k1 and k2 are rate
constants. In the case of BAT-III and P188C, the data were fit to the triexponential
version of equation (1).

Absorption spectra for YF1 variants were recorded with an Agilent 8453
spectrophotometer as described above except that samples were illuminated with
455-nm light (Royal Blue, Luxeon Star, 50 mW cm� 2) at 22 �C until the
photostationary state was reached. Photobleaching and recovery kinetics were
followed by recording absorption spectra. Data evaluation was carried out with
Origin (OriginLab, Northampton, MA, USA).

Fluorescence measurements were carried out on a Varian Cary Eclipse
fluorometer. For kinetic measurements of fluorescent quenching by
photoreduction, samples were excited at 450 nm using a 10-nm bandwidth, and
emission data were collected at 508 nm using a 5-nm slit width with 0.1 s averaging.
Kinetic traces were normalized and fit by MATLAB using equation (1) with y0¼ 1.
Fluorescence intensities used for relative quantum yield measurements were
collected at 525 nm over the first 5 s of excitation at 450 nm. Reoxidation spectra of

P188C were recorded by treatment with [Co(phen)3](ClO4)3?2H2O, which was
prepared as described48.

Analytical SEC. Purified samples of VVD and BAT-LOV* were verified to be
in their dark state by absorption spectroscopy, as indicated by the absence of
adduct- or NSQ-related features. Samples were immediately loaded onto
equilibrated foil-covered Superdex 75 or 200 10/300 GL columns. Light-activated
samples were obtained by irradiation on ice until a significant amount of adduct
or NSQ built up. Samples were checked by UV-vis spectroscopy and immediately
loaded onto the uncovered column, with constant external illumination
throughout the run. Reduced BAT samples were prepared anaerobically with
the addition of 12 mM chromium (II) EDTA complex (Cr:EDTA)49 and
immediately loaded onto the column with degassed buffer (50 mM Hepes (pH 7.5),
500 mM NaCl, 2 mM TCEP, 5 mM DTT). BAT-III samples were photoreduced in
the same degassed buffer and loaded onto the column.

Multi-angle light scattering. A 5.0 mg ml� 1 solution of Bovine Serum Albumin
(BSA, Sigma) was injected onto a Phenomenex Bio Sep-SEC-s 300 column that had
been equilibrated in GF buffer containing 50 mM Tris (pH 7.5) and 150 mM NaCl
to normalize the light-scattering detectors and act as a calibration control for both
peak alignment and molecular weight determinations. Purified protein samples
(1–10 mg ml� 1) were then injected onto the same column. BAT-III samples were
run using degassed buffer (50 mM Hepes (pH 7.5), 500 mM NaCl, 2 mM TCEP,
5 mM DTT). The SEC (WTC050N5—Wyatt) is coupled to a static 18-angle
light-scattering detector (DAWN HELEOS-II), a refractive index detector (Optilab
T-rEX; Wyatt Technology) and dynamic light-scattering device (WyattQELS).
Data were collected every second for 30 min at the flow rate of 1 ml min� 1 at
25 �C. The ASTRA V software was used to extract the molar weight distribution,
root-mean-square radius, radius of hydration and the polydispersity of
each resolved peak, which were taken as averages across the elution peaks.
Concentrations were determined by the refractive index indicator.

YF1 in vivo and in vitro activity assays. In vivo activity measurements of YF1 WT
and variants were conducted in the pDusk-DsRed reporter system as described28.
Briefly, for each construct, three 5-ml LB/Kan cultures were incubated overnight at
37 �C and 225 r.p.m. either in the dark or under constant blue light (470 nm,
100 mW cm� 2). OD600 and DsRed fluorescence were measured using black-walled
96-well mClear plates (Greiner BioOne, Frickenhausen, Germany) with a Tecan
Infinite M200 PRO plate reader (Tecan Group Ltd. Mannedorf, Switzerland).
Fluorescence excitation and emission wavelengths were set at 554±9 nm and
591±20 nm, respectively. Data were normalized to the fluorescence per OD600 for
YF1 WT under dark conditions and represent the averages of three biological
replicates±s.d. Light-dose experiments were conducted as above except that the
intensity of 470-nm light was varied between 0 and 150 mW cm� 2. Light intensities
were determined with a power meter (model 842-PE, Newport) and a silicon
photodetector (model 918D-UV-OD3, Newport).

Net kinase activities of YF1 variants were assessed in vitro by monitoring the
binding of phospho-FixJ to DNA using EMSA. A double-stranded DNA fragment
containing part of the FixK2 promoter sequence was produced by heating to 95 �C
and then slowly cooling a mixture of 100 mM forward oligonucleotide primer
(50-GAGCGATATCTTAAGGGGGGTGCCTTACGTAGAACCC-30) labelled at its
50-end with (5-and-6)-carboxytetramethylrhodamine (TAMRA) and 100 mM of the
reverse complementary primer in 5 mM Tris-HCl (pH 8.0); the high-affinity FixJ
binding site is underlined50,51. To analyse net kinase activities, 250 nM YF1 WT or
variants were mixed with 1 mM ATP and 1.25 mM FixK2-DNA substrate in 10 mM
HEPES (pH 8.0), 80 mM KCl, 2.5 mM MgCl2, 0.1 mM EDTA, 100mg ml� 1 BSA,
10% (v/v) glycerol, 4% (v/v) ethylene glycol and 10 mM Tris(2-carboxyethyl)
phosphine. In case of YF1 variants harbouring the mutation C62A, a ROS
scavenger system containing 0.5 mg ml� 1 glucose oxidase, 5 mg ml� 1 glucose and
30 U catalase was added to the reaction mixture, and the buffer concentration was
raised to 200 mM HEPES. The mixture was either kept in the dark or incubated
under constant blue light (455 nm, 50 mW cm� 2) at 30 �C for 15 min followed by
addition of 30 mM FixJ. Samples were further incubated for 30 min and then run on
a native 6% (w/v) acrylamide gel in TBE buffer (89 mM Tris, 89 mM borate, 2 mM
ethylenediaminetetraacetic acid, pH 8.3) at 100 V for 45 min. DNA bands were
visualized in a Fujifilm image reader FLA 3000 (Fujifilm Holdings K. K.) using
excitation and emission wavelengths of 532 and 580 nm, respectively.

Electron spin resonance spectroscopy. For pulsed-dipolar ESR experiments,
samples containing 350 mM VVD and 30% glycerol (v/v) were irradiated with
448-nm diode laser light on ice for several minutes until uniformly pale blue
in colour and then were flash-frozen in liquid nitrogen. Four-pulse DEER
experiments were conducted at 100 K on a 17.3 GHz Fourier Transform ESR
spectrometer, which is modified to perform pulsed-dipolar ESR experiments52,53.
p/2 and p pulses were 20 ns and 40 ns, respectively, with a frequency separation of
60 MHz. Pumping was applied at the high-field side of the ESR spectrum, with
detection on the opposite low-field slope. Data averaging time was 23 h. The
baseline used for data processing was approximated by a single exponential
function, which slightly deviates from a linear polynomial. Distance distributions of
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spin separations within the sample were calculated by the Tikhonov method and
refined by the maximum entropy regularization53.

For cw-ESR measurements on YF1 variants, E. coli cultures were transferred
into quartz tubes (QSIL GmbH, Ilmenau, Germany; 3.0 mm/3.9 mm inner/outer
diameter), were either kept in the dark or were illuminated with a 450 nm LED
(LUXEON Lumiled, Phillips Lumileds, San Jose, CA, USA) for 5 min, and were
then rapidly frozen in liquid nitrogen. cw-ESR spectra were recorded on a
laboratory-built X-Band spectrometer, consisting of a microwave bridge ER 041
MR, microwave controller ER 048R, magnet power supply ER 081S, field controller
BH 15 and cavity resonator ER 4122 SHQ E all from Bruker. For signal detection, a
Stanford Research SR810 lock-in detector (Stanford Research, Sunnyvale, CA,
USA) was used. Microwave frequency measurements were performed using an
Agilent 53181A frequency counter (Agilent Technologies). The samples were
measured with 4G modulation amplitude, 100 kHz modulation frequency and
100 ms lock-in time constant. The microwave power was 60 mW and the frequency
was B9.38 GHz. For each measurement, the current microwave frequency was
recorded. The spectra were then normalized to 9.6 GHz. During cw-ESR
measurements, samples were maintained at 80 K with an Oxford ESR 910 cryostat
and Oxford ITC503 temperature controller. The reported spectra are averages
over 40 scans.

Sequence analysis and homology modelling. Using Biopython, a BLAST search
was performed with the residues 1–127 of B. subtilis YtvA (PHOT_BACSU) as the
query sequence and with an E-value of 10 as cutoff. The BLAST results were
filtered for entries that lack the adduct-forming cysteine (corresponding to residue
C62 in YtvA) but possess at least 9 out of the other 10 conserved amino acids in
LOV domains (corresponding to residues G59, N61, R63, F64, L65, Q66, N94,
N104 and Q123 in YtvA). The resultant list was manually curated to remove entries
that correspond to proteins in which the active-site cysteine was deliberately
removed by mutation, for example, in LOV domains used as fluorophores.
Sequences were further filtered to remove closely similar entries (cutoff 90%
sequence identity). All remaining entries were aligned to the sequences of VVD
and YtvA using ClustalX54.

A homology model of BAT-LOV* was calculated using SWISS-MODEL55 and
YtvA as the template structure (PDB entry 2PR6), which possesses a sequence
similarity of 45.2% compared with BAT-LOV*. Sequence alignment was achieved
with Clustal Omega at EMBL-EBI54.
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structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal
transducers and modulators. Structure 21, 1127–1136 (2013).

28. Ohlendorf, R., Vidavski, R. R., Eldar, A., Moffat, K. & Möglich, A. From dusk
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