461 research outputs found

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log⁥2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϔpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and Ï”>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    Logarithmic asymptotics of the densities of SPDEs driven by spatially correlated noise

    Full text link
    We consider the family of stochastic partial differential equations indexed by a parameter \eps\in(0,1], \begin{equation*} Lu^{\eps}(t,x) = \eps\sigma(u^\eps(t,x))\dot{F}(t,x)+b(u^\eps(t,x)), \end{equation*} (t,x)\in(0,T]\times\Rd with suitable initial conditions. In this equation, LL is a second-order partial differential operator with constant coefficients, σ\sigma and bb are smooth functions and F˙\dot{F} is a Gaussian noise, white in time and with a stationary correlation in space. Let p^\eps_{t,x} denote the density of the law of u^\eps(t,x) at a fixed point (t,x)\in(0,T]\times\Rd. We study the existence of \lim_{\eps\downarrow 0} \eps^2\log p^\eps_{t,x}(y) for a fixed y∈Ry\in\R. The results apply to a class of stochastic wave equations with d∈{1,2,3}d\in\{1,2,3\} and to a class of stochastic heat equations with d≄1d\ge1.Comment: 39 pages. Will be published in the book " Stochastic Analysis and Applications 2014. A volume in honour of Terry Lyons". Springer Verla

    New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions

    Full text link
    A previous analysis of the charge (Z) correlations in the ΔZ−\Delta Z- plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the production of equally sized fragments (low ΔZ\Delta Z) which was interpreted as an evidence for spinodal decomposition. However the signal is weak and rises the question of the estimation of the uncorrelated yield. After a critical analysis of its robustness, we propose in this paper a new technique to build the uncorrelated yield in the charge correlation function. The application of this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not show any particular enhancement of the correlation function in any ΔZ\Delta Z bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor changes. To appear in Nuclear Physics

    Geometric optics and instability for semi-classical Schrodinger equations

    Full text link
    We prove some instability phenomena for semi-classical (linear or) nonlinear Schrodinger equations. For some perturbations of the data, we show that for very small times, we can neglect the Laplacian, and the mechanism is the same as for the corresponding ordinary differential equation. Our approach allows smaller perturbations of the data, where the instability occurs for times such that the problem cannot be reduced to the study of an o.d.e.Comment: 22 pages. Corollary 1.7 adde

    Can majority support save an endangered language? A case study of language attitudes in Guernsey

    Get PDF
    Many studies of minority language revitalisation focus on the attitudes and perceptions of minorities, but not on those of majority group members. This paper discusses the implications of these issues, and presents research into majority andf minority attitudes towards the endangered indigenous vernacular of Guernsey, Channel Islands. The research used a multi-method approach (questionnaire and interview) to obtain attitudinal data from a representative sample of the population that included politicians and civil servants (209 participants). The findings suggested a shift in language ideology away from the post-second world war ‘culture of modernisation’ and monolingual ideal, towards recognition of the value of a bi/trilingual linguistic heritage. Public opinion in Guernsey now seems to support the maintenance of the indigenous language variety, which has led to a degree of official support. The paper then discusses to what extent this ‘attitude shift’ is reflected in linguistic behaviour and in concrete language planning measures

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
    • 

    corecore