254 research outputs found
Progressive myoclonus epilepsy KCNC1 variant causes a developmental dendritopathy
OBJECTIVE: Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS: To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS: Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE: Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy
Difficulties in administration of oral medication formulations to pet cats: an e-survey of cat owners
The purpose here was to determine the problems cat owners encounter in medicating their cats with orally administered drugs at home. The study was carried out as an open e-questionnaire survey addressed to cat owners in which the authors focused on the oral administration route. A total of 46 completed questionnaires were included in the survey. In the study, 46 cats received 67 orally administered drugs. Approximately half of the drugs were registered for use in cats by the European Medicines Agency (54 per cent), and there were also off-label drugs registered for human (36 per cent) and canine medication (7.4 per cent) and an ex tempore drug (3.0 per cent). The owners were unable to give the doses as prescribed for their cats for one-fourth of the medications (16/67). Drugs that were registered for feline medication were significantly more palatable than drugs registered for other species (odds ratio (OR) 4.9), and liquid formulations were significantly more palatable than solid formulations (OR 4.8). However, most of the owners (22/38) preferred a solid dosage form, while few (4/38) chose a liquid formulation. The results indicate that there is still a need for more palatable and easily administered oral drugs for cats.Peer reviewe
Aural CT characteristics of American Cocker Spaniels have features of both mesaticephalic and brachycephalic breeds
Otitis externa and otitis media are common in American Cocker Spaniels, however breed-specific aural CT descriptions are currently lacking. This prospective and retrospective, observational, analytical study aimed to describe quantitative CT characteristics of the horizontal ear canal and the tympanic bulla in American Cocker Spaniels versus similar-sized mesaticephalic dogs. We prospectively performed clinical examinations and aural CT scanning for 38 American Cocker Spaniels. Computed tomographic transverse area of the osseous horizontal ear canal (TA1), transverse area of the widest air-filled part of the cartilaginous horizontal ear canal (TA2), tympanic bulla volume, and tympanic bulla wall thickness were measured. The TA1 and TA2 measurements were compared with those of 23 retrospectively recruited, similar-sized mesaticephalic dogs that had undergone CT-scanning of the head for non-ear-related reasons. The TA1 and TA2 did not differ for healthy American Cocker Spaniels and mesaticephalic dogs. Severely affected American Cocker Spaniels had significantly smaller TA2 (P <.001). The intraclass correlation coefficient for intraobserver and interobserver repeatability was 0.972 and 0.983 for TA1 and 0.994 and 0.998 for TA2, respectively. Variation between individuals was subjectively noted in healthy and affected American Cocker Spaniels, but mean tympanic bulla volume was slightly smaller in relation to body weight, and the tympanic bulla wall was thicker than in previous reports for mesaticephalic dogs. The tympanic bulla wall appeared thicker rostro-ventrally than caudo-ventrally in 44% of the dogs. Our results imply that a relatively thick tympanic bulla wall may be a normal CT variation and should be interpreted cautiously in this breed.Peer reviewe
Ageing Contributes to Phenotype Transition in a Mouse Model of Periodic Paralysis
Background:
Periodic paralysis (PP) is a rare genetic disorder in which ion channel mutation causes episodic paralysis in association with hyper- or hypokalaemia. An unexplained but consistent feature of PP is that a phenotype transition occurs around the age of 40, in which the severity of potassium-induced muscle weakness declines but onset of fixed, progressive weakness is reported. This phenotype transition coincides with the age at which muscle mass and optimal motor function start to decline in healthy individuals. We sought to determine if the phenotype transition in PP is linked to the normal ageing phenotype transition and to explore the mechanisms involved.
Methods:
A mouse model of hyperkalaemic PP was compared with wild-type littermates across a range of ages (13â104 weeks). Only male mice were used as penetrance is incomplete in females. We adapted the muscle velocity recovery cycle technique from humans to examine murine muscle excitability in vivo. We then examined changes in potassium-induced weakness or caffeine contracture force with age using ex vivo muscle tension testing. Muscles were further characterized by either Western blot, histology or energy charge measurement. For normally distributed data, a student's t-test (± Welch correction) or one- or two-way analysis of variance (ANOVA) was performed to determine significance. For data that were not normally distributed, Welch rank test, Mann Whitney U test or KruskalâWallis ANOVA was performed. When an ANOVA was significant (P < 0.05), post hoc Tukey testing was used.
Results:
Both WT (P = 0.009) and PP (P = 0.007) muscles exhibit increased resistance to potassium-induced weakness with age. Our data suggest that healthy-old muscle develops mechanisms to maintain force despite sarcolemmal depolarization and sodium channel inactivation. In contrast, reduced caffeine contracture force (P = 0.00005), skeletal muscle energy charge (P = 0.004) and structural core pathology (P = 0.005) were specific to Draggen muscle, indicating that they are caused, or at least accelerated by, chronic genetic ion channel dysfunction.
Conclusions:
The phenotype transition with age is replicated in a mouse model of PP. Intrinsic muscle ageing protects against potassium-induced weakness in HyperPP mice. However, it also appears to accelerate impairment of sarcoplasmic reticulum calcium release, mitochondrial impairment and the development of core-like regions, suggesting acquired RyR1 dysfunction as the potential aetiology. This work provides a first description of mechanisms involved in phenotype transition with age in PP. It also demonstrates how studying phenotype transition with age in monogenic disease can yield novel insights into both disease physiology and the ageing process itself
Concurrent sodium channelopathies and amyotrophic lateral sclerosis supports shared pathogenesis
Amyotrophic lateral sclerosis (ALS) is an invariably fatal adult-onset neurodegenerative disorder; approximately 10% of ALS is monogenic but all ALS exhibits significant heritability. The skeletal muscle sodium channelopathies are a group of inherited, non-dystrophic ion channel disorders caused by heterozygous point mutations in the SCN4A gene, leading to clinical manifestations of congenital myotonia, paramyotonia, and periodic paralysis syndromes. We provide clinical and genetic evidence of concurrence of these two rare disorders which implies a possible shared underlying pathophysiology in two patients. We then identify an enrichment of ALS-associated mutations in another sodium channel, SCN7A, from whole genome sequencing data of 4495 ALS patients and 1925 controls passing multiple testing correction (67 variants, pâ=â0.0002, Firth logistic regression). These findings suggest dysfunctional sodium channels may play a role upstream in the pathogenesis of ALS in a subset of patients, potentially opening the door to novel personalized medicine approaches
Effects of vatinoxan on cardiorespiratory function and gastrointestinal motility during constant-rate medetomidine infusion in standing horses
Background: Medetomidine suppresses cardiovascular function and reduces gastrointestinal motility in horses mainly through peripheral α2âadrenoceptors. Vatinoxan, a peripheral α2âantagonist, has been shown experimentally to alleviate the adverse effects of some α2âagonists in horses. However, vatinoxan has not been investigated during constantârate infusion (CRI) of medetomidine in standing horses.Objectives: To evaluate effects of vatinoxan on cardiovascular function, gastrointestinal motility and on sedation level during CRI of medetomidine.Study design: Experimental, randomised, blinded, crossâover study.Methods: Six healthy horses were given medetomidine hydrochloride, 7 ÎŒg/kg i.v., without (MED) and with (MED+V) vatinoxan hydrochloride, 140 ÎŒg/kg i.v., followed by CRI of medetomidine at 3.5 ÎŒg/kg/h for 60 min. Cardiorespiratory variables were recorded and borborygmi and sedation levels were scored for 120 min. Plasma drug concentrations were measured. The data were analysed using repeated measures ANCOVA and paired tâtests as appropriate.Results: Initially heart rate (HR) was significantly lower and mean arterial blood pressure (MAP) significantly higher with MED compared with MED+V. For example at 10 min HR (mean ± s.d.) was 26 ± 2 and 31 ± 5 beats/minute (P = 0.04) and MAP 129 ± 15 and 103 ± 13 mmHg (PMain limitations: Experimental study with healthy, unstimulated animals.Conclusions: Vatinoxan administered i.v. with a loading dose of medetomidine improved cardiovascular function and gastrointestinal motility during medetomidine CRI in healthy horses. Sedation was slightly yet significantly reduced during the first 20 min.</p
Myotonia in a patient with a mutation in an S4 arginine residue associated with hypokalaemic periodic paralysis and a concomitant synonymous CLCN1 mutation
The sarcolemmal voltage gated sodium channel NaV1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions. Mutations that lead to increased NaV1.4 currents are found in patients with myotonia or hyperkalaemic periodic paralysis (HyperPP). Myotonia is also caused by mutations in the CLCN1gene that result in loss-of-function of the skeletal muscle chloride channel ClC-1. Mutations affecting arginine residues in the fourth transmembrane helix (S4) of the NaV1.4 VSDs can result in a leak current through the VSD and hypokalemic periodic paralysis (HypoPP), but these have hitherto not been associated with myotonia. We report a patient with an Nav1.4 S4 arginine mutation, R222Q, presenting with severe myotonia without fulminant paralytic episodes. Other mutations affecting the same residue, R222W and R222G, have been found in patients with HypoPP. We show that R222Q channels have enhanced activation, consistent with myotonia, but also conduct a leak current. The patient carries a concomitant synonymous CLCN1 variant that likely worsens the myotonia and potentially contributes to the amelioration of muscle paralysis. Our data show phenotypic variability for different mutations affecting the same S4 arginine that have implications for clinical therapy
Polygenic Risk Scores and Physical Activity
Purpose Polygenic risk scores (PRS) summarize genome-wide genotype data into a single variable that produces an individual-level risk score for genetic liability. PRS has been used for prediction of chronic diseases and some risk factors. As PRS has been studied less for physical activity (PA), we constructed PRS for PA and studied how much variation in PA can be explained by this PRS in independent population samples. Methods We calculated PRS for self-reported and objectively measured PA using UK Biobank genome-wide association study summary statistics, and analyzed how much of the variation in self-reported (MET-hours per day) and measured (steps and moderate-to-vigorous PA minutes per day) PA could be accounted for by the PRS in the Finnish Twin Cohorts (FTC;N= 759-11,528) and the Northern Finland Birth Cohort 1966 (NFBC1966;N= 3263-4061). Objective measurement of PA was done with wrist-worn accelerometer in UK Biobank and NFBC1966 studies, and with hip-worn accelerometer in the FTC. Results The PRS accounted from 0.07% to 1.44% of the variation (R-2) in the self-reported and objectively measured PA volumes (Pvalue range = 0.023 toPeer reviewe
Effects of intramuscular vatinoxan (MK-467), co-administered with medetomidine and butorphanol, on cardiopulmonary and anaesthetic effects of intravenous ketamine in dogs
Objective To investigate the impact of intramuscular (IM)co-administration of the peripheral α2-adrenoceptor agonist vatinoxan (MK-467) with medetomidine and butorphanol prior to intravenous (IV) ketamine on the cardiopulmonaryand anaesthetic effects in dogs, followed by atipamezole reversal.Study design Randomized, masked crossover study.Animals A total of eight purpose-bred Beagle dogs aged 3 years.Methods Each dog was instrumented and administered two treatments 2 weeks apart: medetomidine (20 ”g kg-1) and butorphanol (100 ”g kg-1) premedication with vatinoxan (500 ”g kg-1; treatment MVB) or without vatinoxan (treatment MB) IM 20 minutes before IV ketamine (4 mg kg-1). Atipamezole (100 ”g kg-1) was administered IM 60 minutes after ketamine. Heart rate (HR), mean arterial (MAP) and central venous (CVP) pressures and cardiac output (CO) were measured; cardiac (CI) and systemic vascular resistance (SVRI) indices were calculated before and 10 minutes after MVB or MB, and 10, 25, 40, 55, 70 and 100 minutes after ketamine. Data were analysed with repeated measures analysis of covariance models. A p-value Results At most time points, HR and CI were significantly higher, and SVRI and CVP significantly lower with MVB than with MB. With both treatments, SVRI and MAP decreased after ketamine, whereas HR and CI increased. MAP was significantly lower with MVB than with MB; mild hypotension (57-59 mmHg) was recorded in two dogs with MVB prior to atipamezole administration. Sedation, induction, intubation and recovery scores were not different between treatments, but intolerance to the endotracheal tube was observed earlier with MVB. Conclusions and clinical relevance Haemodynamic performance was improved by vatinoxan co-administration with medetomidine-butorphanol, before and after ketamine administration. However, vatinoxan was associated with mild hypotension after ketamine with the dose used in this study. Vatinoxan shortened the duration of anaesthesia.</p
Choice Architecture Cueing to Healthier Dietary Choices and Physical Activity at the Workplace:Implementation and Feasibility Evaluation
Redesigning choice environments appears a promising approach to encourage healthier eating and physical activity, but little evidence exists of the feasibility of this approach in real-world settings. The aim of this paper is to portray the implementation and feasibility assessment of a 12-month mixed-methods intervention study, StopDia at Work, targeting the environment of 53 diverse worksites. The intervention was conducted within a type 2 diabetes prevention study, StopDia. We assessed feasibility through the fidelity, facilitators and barriers, and maintenance of implementation, building on implementer interviews (n = 61 informants) and observations of the worksites at six (t1) and twelve months (t2). We analysed quantitative data with KruskallâWallis and MannâWhitney U tests and qualitative data with content analysis. Intervention sites altogether implemented 23 various choice architectural strategies (median 3, range 0â14 strategies/site), employing 21 behaviour change mechanisms. Quantitative analysis found implementation was successful in 66%, imperfect in 25%, and failed in 9% of evaluated cases. These ratings were independent of the ease of implementation of applied strategies and reminders that implementers received. Researchersâ assistance in intervention launch (p = 0.02) and direct contact to intervention sites (p < 0.001) predicted higher fidelity at t1, but not at t2. Qualitative content analysis identified facilitators and barriers related to the organisation, intervention, worksite environment, implementer, and user. Contributors of successful implementation included apt implementers, sufficient implementer training, careful planning, integration into worksite values and activities, and management support. After the study, 49% of the worksites intended to maintain the implementation in some form. Overall, the choice architecture approach seems suitable for workplace health promotion, but a range of practicalities warrant consideration while designing real-world implementation
- âŠ