102 research outputs found

    A Wormhole at the core of an infinite cosmic string

    Get PDF
    We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2Ï€2 \pi deficit at the core. We show that the coordinate singularity associated to this defect can be interpreted as a traversible wormhole lodging at the the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott's like solution, that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is 2+1 spacetime solution.Comment: 1 tex file and 5 eps files. To be Published in Nov. in Phys.Rev.

    Topological Defects and Cosmology

    Get PDF
    Many particle physics models of matter admit solutions corresponding to stable or long-lived topological defects. In the context of standard cosmology it is then unavoidable that such defects will form during phase transitions in the very early Universe. Certain types of defects lead to disastrous consequences for cosmology, others may play a useful role, as possible seeds for the formation of structure in the Universe, or in mediating baryon number violating processes. In all cases, topological defects lead to a fruitful interplay between particle physics and cosmology.Comment: 17 pages, no figures; Invited lectures at WHEPP-5, IUCAA, Pune, India, Jan. 12 - 26 199

    A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo

    Get PDF
    We have constructed a novel tetra-promoter vector (pBVboostFG) system that enables screening of gene/cDNA libraries for functional genomic studies. The vector enables an all-in-one strategy for gene expression in mammalian, bacterial and insect cells and is also suitable for direct use in vivo. Virus preparation is based on an improved mini Tn7 transpositional system allowing easy and fast production of recombinant baculoviruses with high diversity and negligible background. Cloning of the desired DNA fragments or libraries is based on the recombination system of bacteriophage lambda. As an example of the utility of the vector, genes or cDNAs of 18 different proteins were cloned into pBVboostFG and expressed in different hosts. As a proof-of-principle of using the vector for library screening, a chromophoric Thr(65)-Tyr-Gly(67)-stretch of enhanced green fluorescent protein was destroyed and subsequently restored by novel PCR strategy and library screening. The pBVboostFG enables screening of genome-wide libraries, thus making it an efficient new platform technology for functional genomics

    Ten-Year Mortality and Cardiovascular Morbidity in the Finnish Diabetes Prevention Study—Secondary Analysis of the Randomized Trial

    Get PDF
    The Finnish Diabetes Prevention Study (DPS) was a randomized controlled trial, which showed that it is possible to prevent type 2 diabetes by lifestyle changes. The aim of the present study was to examine whether the lifestyle intervention had an effect on the ten-year mortality and cardiovascular morbidity in the DPS participants originally randomized either into an intervention or control group. Furthermore, we compared these results with a population-based cohort comprising individuals of varying glucose tolerance states.Middle-aged, overweight people with IGT (n = 522) were randomized into intensive intervention (including physical activity, weight reduction and dietary counseling), or control "mini-intervention" group. Median length of the intervention period was 4 years and the mean follow-up was 10.6 years. The population-based reference study cohort included 1881 individuals (1570 with normal glucose tolerance, 183 with IGT, 59 with screen-detected type 2 diabetes, 69 with previously known type 2 diabetes) with the mean follow-up of 13.8 years. Mortality and cardiovascular morbidity data were collected from the national Hospital Discharge Register and Causes of Death Register. Among the DPS participants who consented for register linkage (n = 505), total mortality (2.2 vs. 3.8 per 1000 person years, hazard ratio HR = 0.57, 95% CI 0.21-1.58) and cardiovascular morbidity (22.9 vs. 22.0 per 1000 person years, HR = 1.04, 95% CI 0.72-1.51) did not differ significantly between the intervention and control groups. Compared with the population-based cohort with impaired glucose tolerance, adjusted HRs were 0.21 (95% CI 0.09-0.52) and 0.39 (95% CI 0.20-0.79) for total mortality, and 0.89 (95% CI 0.62-1.27) and 0.87 (0.60-1.27) for cardiovascular morbidity in the intervention and control groups of the DPS, respectively. The risk of death in DPS combined cohort was markedly lower than in FINRISK IGT cohort (adjusted HR 0.30, 95% CI 0.17-0.54), but there was no significant difference in the risk of CVD (adjusted HR 0.88, 95% CI 0.64-1.21).Lifestyle intervention among persons with IGT did not decrease cardiovascular morbidity during the first 10 years of follow-up. However, the statistical power may not be sufficient to detect small differences between the intervention and control groups. Low total mortality among participants of the DPS compared with individuals with IGT in the general population could be ascribed to a lower cardiovascular risk profile at baseline and regular follow-up.ClinicalTrials.gov NCT00518167

    Digital Gene Expression Profiling by 5′-End Sequencing of cDNAs during Reprogramming in the Moss Physcomitrella patens

    Get PDF
    Stem cells self-renew and repeatedly produce differentiated cells during development and growth. The differentiated cells can be converted into stem cells in some metazoans and land plants with appropriate treatments. After leaves of the moss Physcomitrella patens are excised, leaf cells reenter the cell cycle and commence tip growth, which is characteristic of stem cells called chloronema apical cells. To understand the underlying molecular mechanisms, a digital gene expression profiling method using mRNA 5′-end tags (5′-DGE) was established. The 5′-DGE method produced reproducible data with a dynamic range of four orders that correlated well with qRT-PCR measurements. After the excision of leaves, the expression levels of 11% of the transcripts changed significantly within 6 h. Genes involved in stress responses and proteolysis were induced and those involved in metabolism, including photosynthesis, were reduced. The later processes of reprogramming involved photosynthesis recovery and higher macromolecule biosynthesis, including of RNA and proteins. Auxin and cytokinin signaling pathways, which are activated during stem cell formation via callus in flowering plants, are also activated during reprogramming in P. patens, although no exogenous phytohormone is applied in the moss system, suggesting that an intrinsic phytohormone regulatory system may be used in the moss

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe

    Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils

    Get PDF
    Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin–cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering
    • …
    corecore