20 research outputs found

    Cement-rock interaction : infiltration of a high-pH solution into a fractured granite core

    Get PDF
    Within the framework of the HPF project (Hyperalkaline Plume in Fractured Rock) at the Grimsel Test Site (Switzerland), a small scale core infiltration experiment was performed at the University of Bern. A high-pH solution was continuously injected, under a constant pressure gradient, into a cylindrical core of granite containing a fracture. This high-pH solution was a synthetic version of solutions characteristic of early stages in the degradation of cement. The interaction between the rock and the solutions was reflected by significant changes in the composition of the injected solution, despite the negligible pH-buffering capacity, and a decrease in the permeability of the rock. Changes in the mineralogy and porosity of the fault gouge filling the fracture were only minor. Within the new LCS (Long-Term Cement Studies) project at Grimsel, new one-dimensional reactive transport modeling using CrunchFlow has been used to improve the interpretation of the experimental results. Dispersive and advective solute transport, adsorption processes and mineral reaction kinetics have been taken into account. The evolution of solution composition is mainly controlled by dissolution/precipitation reactions. Adsorption processes (cation exchange, surface complexation) only play a role in the very early stages of the experiment

    Correlates of children’s physical activity during physical education classes

    Get PDF
    Aim: The aim of this study was to investigate the influence of correlates on physical activity (PA) during physical education (PE). Method: One hundred and ninety children (11.2 ± 0.8 y, 1.5 ± 0.1 m, 37.7 ± 8.3 kg) of 12 classes participated. Children were asked to wear an accelerometer for seven days. Teachers filled in a questionnaire to collect data about correlates of PA during PE (i.e. sex, weight, age of children, daily PA of the children, class size, PA behavior and formation of the teacher and size of gym). Correlates for moderate-to-vigorous PA (MVPA) during PE were determined using multifactor linear regression analysis. Results Fifty-three percent of the variability of MVPA during PE was explained by the investigated correlates. Apart from individual correlates (sex, weight, age), PE taught in small classes and large gyms by a PE specialist and a high overall PA of the child had independent positive effects on MVPA during PE. Conclusion: The results underline the importance of small PE classes taught by specialized PE teachers in large gyms and the increase of overall PA of children for effective future intervention studies and for political discussion focusing on increasing PA during PE

    Cement-rock interaction : infiltration of a high-pH solution into a fractured granite core

    No full text
    Within the framework of the HPF project (Hyperalkaline Plume in Fractured Rock) at the Grimsel Test Site (Switzerland), a small scale core infiltration experiment was performed at the University of Bern. A high-pH solution was continuously injected, under a constant pressure gradient, into a cylindrical core of granite containing a fracture. This high-pH solution was a synthetic version of solutions characteristic of early stages in the degradation of cement. The interaction between the rock and the solutions was reflected by significant changes in the composition of the injected solution, despite the negligible pH-buffering capacity, and a decrease in the permeability of the rock. Changes in the mineralogy and porosity of the fault gouge filling the fracture were only minor. Within the new LCS (Long-Term Cement Studies) project at Grimsel, new one-dimensional reactive transport modeling using CrunchFlow has been used to improve the interpretation of the experimental results. Dispersive and advective solute transport, adsorption processes and mineral reaction kinetics have been taken into account. The evolution of solution composition is mainly controlled by dissolution/precipitation reactions. Adsorption processes (cation exchange, surface complexation) only play a role in the very early stages of the experiment

    Reactive transport modelling of a high-pH infiltration test in concrete

    No full text
    A laboratory-scale tracer test was carried out to characterize the transport properties of concrete from the Radioactive Waste Disposal Facility at El Cabril (Spain). A hyperalkaline solution (K-Ca-OH, pH = 13.2) was injected into a concrete sample under a high entry pressure in order to perform the experiment within a reasonable time span, obtaining a decrease of permeability by a factor of 1000. The concentrations of the tracers, major elements (Ca2+, SO4 2−, K+ and Na+) and pH were measured at the outlet of the concrete sample. A reactive transport model was built based on a double porosity conceptual model, which considers diffusion between a mobile zone, where water can flow, and an immobile zone without any advective transport. The numerical model assumed that all reactions took place in the immobile zone. The cement paste consists of C-S-H gel, portlandite, ettringite, calcite and gypsum, together with residual alite and belite. Two different models were compared, one with portlandite in equilibrium (high initial surface area) and another one with portlandite reaction controlled by kinetics (low initial surface area). Overall the results show dissolution of alite, belite, gypsum, quartz, C-S-H gel and ettringite and precipitation of portlandite and calcite. Permeability could have decreased due to mineral precipitation. © 2017 Elsevier LtdThe authors would like to thank Jordi Illa and Salvador Galí (Universitat de Barcelona) for their help in the X-Ray diffraction analysis. We acknowledge financial support of the Spanish Ministry of Economy and Competitivity through the project HEART (CGL2010-18450), a Research Grant from the Technical University of Catalonia (UPC) and ENRESA (Spanish Nuclear Waste Management Company).Peer reviewe

    Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution

    No full text
    Fly ash from municipal solid waste incineration contains a large potential for recyclable metals such as Zn, Pb, Cu and Cd. The Swiss Waste Ordinance prescribes the treatment of fly ash and recovery of metals to be implemented by 2021. More than 60% of the fly ash in Switzerland is acid leached according to the FLUWA process, which provides the basis for metal recovery. The investigation and optimization of the FLUWA process is of increasing interest and an industrial solution for direct metal recovery within Switzerland is in development. With this work, a detailed laboratory study on different filter cakes from fly ash leaching using HCl 5% (represents the FLUWA process) and concentrated sodium chloride solution (300 g/L) is described. This two-step leaching of fly ash is an efficient combination for the mobilization of a high percentage of heavy metals from fly ash (Pb, Cd ≥ 90% and Cu, Zn 70-80%). The depletion of these metals is mainly due to a combination of redox reaction and metal-chloride-complex formation. The results indicate a way forward for an improved metal depletion and recovery from fly ash that has potential for application at industrial scale

    A natural cement analogue study to understand the long-term behaviour of cements in nuclear waste repositories: Maqarin (Jordan)

    No full text
    The geological storage of nuclear waste includes multibarrier engineered systems where a large amount of cement-based material is used. Predicting the long term behaviour of cement is approached by reactive transport modelling, where some of the boundary conditions can be defined through studying natural cement analogues (e.g. at the Maqarin natural analogue site). At Maqarin, pyrometamorphism of clay biomicrites and siliceous chalks, caused by the in-situ combustion of organic matter, produced various clinker minerals. The interaction of infiltrating groundwater with these clinker phases resulted in a portlandite-buffered hyperalkaline leachate plume, which migrated into the adjacent biomicrite host rock, resulting in the precipitation of hydrated cement minerals. In this study, rock samples with different degrees of interaction with the hyperalkaline plume were investigated by various methods (mostly SEM-EDS). The observations have identified a paragenetic sequence of hydrous cement minerals, and reveal how the fractures and porosity in the biomicrite have become sequentially filled. In the alkaline disturbed zone, C-A-S-H (an unstoichiometric gel of Ca, Al, Si and OH) is observed to fill the pores of the biomicrite wallrock, as a consequence of reaction with a high pH Ca-rich fluid circulating in fractures. Porosity profiles indicate that in some cases the pores of the rock adjacent to the fractures became tightly sealed, whereas in the veins some porosity is preserved. Later pulses of sulphate-rich groundwater precipitated ettringite and occasionally thaumasite in the veins, whereas downstream in the lower pH distal regions of the hyperalkaline plume, zeolite was precipitated. Comparing our observations with the reactive transport modelling results reveals two major discrepancies: firstly, the models predict that ettringite is precipitated before C-A-S-H, whereas the C-A-S-H is observed as the earlier phase in Maqarin; and, secondly, the models predict that ettringite acts as the principal pore-filling phase in contrast to the C-A-S-H observed in the natural system. These discrepancies are related to the fact that our data were not available at the time the modelling studies were performed. However, all models succeeded in reproducing the porosity reduction observed at the fracture–rock interface in the natural analogue system

    Resolving Cl and SO4 Profiles in a Clay-Rich Rock Sequence

    No full text
    The chloride and sulfate concentration profiles in a 260 m thick clay-rich Mesozoic sediment sequence have been analyzed by various methods. Chloride data generally indicate a good consistency between different methods if anion exclusion is accounted for in leaching tests. For sulfate, however, there is an apparent inconsistency between leaching data and those obtained from the other methods, which points to the dissolution of a sulfur-bearing mineral. Traces of diagenetic gypsum seem to be a likely source, but other sulfur minerals cannot be ruled out
    corecore