6 research outputs found

    Calculated vibrational properties of pigments in protein binding sites

    No full text
    FTIR difference spectroscopy is widely used to probe molecular bonding interactions of protein-bound electron transfer cofactors. The technique is particularly attractive because it provides information on both neutral and radical cofactor states. Such dual information is not easily obtainable using other techniques. Although FTIR difference spectroscopy has been used to study cofactors in biological protein complexes, in nearly all cases interpretation of the spectra has been purely qualitative. Virtually no computational work has been undertaken in an attempt to model the spectra. To address this problem we have developed the use of ONIOM (our own N-layered integrated molecular Orbital + Molecular mechanics package) (quantum mechanical:molecular mechanics) methods to calculate FTIR difference spectra associated with protein-bound cofactors. As a specific example showing the utility of the approach we have calculated isotope edited FTIR difference spectra associated with unlabeled and labeled ubiquinones in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. The calculated spectra are in remarkable agreement with experiment. Such agreement cannot be obtained by considering ubiquinone molecules in the gas phase or in solution. A calculation including the protein environment is required. The ONIOM calculated spectra agree well with experiment but indicate a very different interpretation of the experimental data compared to that proposed previously. In particular the calculations do not predict that one of the carbonyl groups of QA is very strongly hydrogen bonded. We show that a computational-based interpretation of FTIR difference spectra associated with protein-bound cofactors is now possible. This approach will be applicable to FTIR studies of many cofactor-containing proteins

    Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy

    No full text
    Membrane proteins are molecular machines that transport ions, solutes, or information across the cell membrane. Electrophysiological techniques have unraveled many functional aspects of ion channels but suffer from the lack of structural sensitivity. Here, we present spectroelectrochemical data on vibrational changes of membrane proteins derived from a single monolayer. For the seven-helical transmembrane protein sensory rhodopsin II, structural changes of the protein backbone and the retinal cofactor as well as single ion transfer events are resolved by surface-enhanced IR difference absorption spectroscopy (SEIDAS). Angular changes of bonds versus the membrane normal have been determined because SEIDAS monitors only those vibrations whose dipole moment are oriented perpendicular to the solid surface. The application of negative membrane potentials (ΔV = −0.3 V) leads to the selective halt of the light-induced proton transfer at the stage of D75, the counter ion of the retinal Schiff base. It is inferred that the voltage raises the energy barrier of this particular proton-transfer reaction, rendering the energy deposited in the retinal by light excitation insufficient for charge transfer to occur. The other structural rearrangements that accompany light-induced activity of the membrane protein, are essentially unaffected by the transmembrane electric field. Our results demonstrate that SEIDAS is a generic approach to study processes that depend on the membrane potential, like those in voltage-gated ion channels and transporters, to elucidate the mechanism of ion transfer with unprecedented spatial sensitivity and temporal resolution

    Real-time molecular monitoring of chemical environment in obligate anaerobes during oxygen adaptive response

    No full text
    Determining the transient chemical properties of the intracellular environment can elucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms that enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier transform infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bond structures in their cellular water. We observed a sequence of well orchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses

    Experimental support for the “E pathway hypothesis” of coupled transmembrane e(–) and H(+) transfer in dihemic quinol:fumarate reductase

    No full text
    Reconciliation of apparently contradictory experimental results obtained on the quinol:fumarate reductase, a diheme-containing respiratory membrane protein complex from Wolinella succinogenes, was previously obtained by the proposal of the so-called “E pathway hypothesis.” According to this hypothesis, transmembrane electron transfer via the heme groups is strictly coupled to cotransfer of protons via a transiently established pathway thought to contain the side chain of residue Glu-C180 as the most prominent component. Here we demonstrate that, after replacement of Glu-C180 with Gln or Ile by site-directed mutagenesis, the resulting mutants are unable to grow on fumarate, and the membrane-bound variant enzymes lack quinol oxidation activity. Upon solubilization, however, the purified enzymes display ≈1/10 of the specific quinol oxidation activity of the wild-type enzyme and unchanged quinol Michaelis constants, K(m). The refined x-ray crystal structures at 2.19 Å and 2.76 Å resolution, respectively, rule out major structural changes to account for these experimental observations. Changes in the oxidation–reduction heme midpoint potential allow the conclusion that deprotonation of Glu-C180 in the wild-type enzyme facilitates the reoxidation of the reduced high-potential heme. Comparison of solvent isotope effects indicates that a rate-limiting proton transfer step in the wild-type enzyme is lost in the Glu-C180 → Gln variant. The results provide experimental evidence for the validity of the E pathway hypothesis and for a crucial functional role of Glu-C180

    FTIR difference spectroscopy of bacteriorhodopsin: Toward a molecular model

    No full text
    corecore