150 research outputs found

    Dynamical capture of the moon by the earth

    Get PDF
    Numerical integration of equations for dynamic capture of moon by eart

    Analytical approximation for the structure of differentially rotating barotropes

    Full text link
    Approximate analytical formula for density distribution in differentially rotating stars is derived. Any barotropic EOS and conservative rotation law can be handled with use of this method for wide range of differential rotation strength. Results are in good qualitative agreement with comparison to the other methods. Some applications are suggested and possible improvements of the formula are discussed.Comment: 10 pages, 13 figures, accepted for publication in Monthly Notice

    Spontaneous Breaking of Rotational Symmetry in Rotating Solitons - a Toy Model of Excited Nucleons with High Angular Momentum

    Full text link
    We study the phenomenon of spontaneous breaking of rotational symmetry (SBRS) in the rotating solutions of two types of baby Skyrme models. In the first the domain is a two-sphere and in the other, the Skyrmions are confined to the interior of a unit disk. Numerical full-field results show that when the angular momentum of the Skyrmions increases above a certain critical value, the rotational symmetry of the solutions is broken and the minimal energy configurations become less symmetric. We propose a possible mechanism as to why SBRS is present in the rotating solutions of these models, while it is not observed in the `usual' baby Skyrme model. Our results might be relevant for a qualitative understanding of the non-spherical deformation of excited nucleons with high orbital angular momentum.Comment: RevTex, 9 pages, 9 figures. Added conten

    Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors

    Full text link
    We report the development of nanowire field-effect transistors featuring an ultra-thin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally-coated nanowires, which we used to produce functional Ω\Omega-gate and gate-all-around structures. These give sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding 10310^3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically-treated nanowire surfaces; a feature generally not possible with oxides produced by atomic layer deposition due to the surface `self-cleaning' effect. Our results highlight the potential for parylene as an alternative ultra-thin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties

    On the stability of self-gravitating accreting flows

    Get PDF
    Analytic methods show stability of the stationary accretion of test fluids but they are inconclusive in the case of self-gravitating stationary flows. We investigate numerically stability of those stationary flows onto compact objects that are transonic and rich in gas. In all studied examples solutions appear stable. Numerical investigation suggests also that the analogy between sonic and event horizons holds for small perturbations of compact support but fails in the case of finite perturbations.Comment: 10 pages, accepted for publication in PR

    Prospects for single-molecule electrostatic detection in molecular motor gliding motility assays

    Full text link
    Molecular motor gliding motility assays based on myosin/actin or kinesin/microtubules are of interest for nanotechnology applications ranging from cargo-trafficking in lab-on-a-chip devices to novel biocomputation strategies. Prototype systems are typically monitored by expensive and bulky fluorescence microscopy systems and the development of integrated, direct electric detection of single filaments would strongly benefit applications and scale-up. We present estimates for the viability of such a detector by calculating the electrostatic potential change generated at a carbon nanotube transistor by a motile actin filament or microtubule under realistic gliding assay conditions. We combine this with detection limits based on previous state-of-the-art experiments using carbon nanotube transistors to detect catalysis by a bound lysozyme molecule and melting of a bound short-strand DNA molecule. Our results show that detection should be possible for both actin and microtubules using existing low ionic strength buffers given good device design, e.g., by raising the transistor slightly above the guiding channel floor. We perform studies as a function of buffer ionic strength, height of the transistor above the guiding channel floor, presence/absence of the casein surface passivation layer for microtubule assays and the linear charge density of the actin filaments/microtubules. We show that detection of microtubules is a more likely prospect given their smaller height of travel above the surface, higher negative charge density and the casein passivation, and may possibly be achieved with the nanoscale transistor sitting directly on the guiding channel floor.Comment: Submitted to New Journal of Physic

    Stellar Evolution with Enriched Surface Convection Zones I. General Effects of Planet Consumption

    Full text link
    Abundance analyses of stars with planets have revealed that their metallicities are enhanced relative to field stars. Such a trend was originally suggested to be due to accretion of iron-rich planetary material. Based on this assumption, we have developed a stellar evolution code to model stars with non-uniform metallicity distributions. We have calculated ``polluted'' stellar evolution tracks for stars with M=0.9-1.2 M_sun. Our models encompass a range of initial metal content from Z=0.01 to 0.03, and include metallicity enhancements within the stellar convection zone corresponding to Delta-Z=0.005-0.03. We find that the primary effects of metal enhancement on stellar structure and evolution are expansion of the convection zone and downward shift of effective temperature. In addition, we have computed the surface metallicities expected for stars of different mass for fixed quantities of pollution; there appears to be no correlation with present observational data on the metallicities of stars known to harbor planets.Comment: 29 pages, 10 figures, accepted for publication by the Astrophysical Journal; one reference correcte

    DNA methylation and body mass index:investigating identified methylation sites at HIF3A in a causal framework

    Get PDF
    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation.Rebecca C. Richmond, Gemma C. Sharp, Mary E. Ward, Abigail Fraser, Oliver Lyttleton, Wendy L. McArdle, Susan M. Ring, Tom R. Gaunt, Debbie A. Lawlor, George Davey Smith, and Caroline L. Relto
    corecore