93 research outputs found

    Chemically treated 3D printed polymer scaffolds for biomineral formation

    Get PDF
    We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas

    Coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies

    No full text
    Three different tetraazamacrocyclic ligands containing four amide substituents that feature groups (namely allyl, styryl and propargyl groups) suitable for polymerisation have been synthesised. Gadolinium(III) complexes of these three ligands have been prepared as potential monomers for the synthesis of polymeric MRI contrast agents. To assess the potential of these monomers as MRI contrast agents, their relaxation enhancement properties and cytotoxicity have been determined. A europium(III) complex of one of these ligands (with propargyl substituents) is also presented together with its PARACEST properties. In addition, to gain further insight into the coordination chemistry of the tetra-propargyl substituted ligand, the corresponding zinc(II) and cadmium(II) complexes have been prepared. The X-ray crystal structures of the tetra-propargyl ligand and its corresponding gadolinium(III), zinc(II) and cadmium(II) complexes are also presented

    Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4T

    Get PDF
    Background: Myocardial infarction (MI) can be readily assessed using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR). Inversion recovery (IR) sequences provide the highest contrast between enhanced infarct areas and healthy myocardium. Applying such methods to small animals is challenging due to rapid respiratory and cardiac rates relative to T-1 relaxation.Methods: Here we present a fast and robust protocol for assessing LGE in small animals using a multi-slice IR gradient echo sequence for efficient assessment of LGE. An additional Look-Locker sequence was used to assess the optimum inversion point on an individual basis and to determine most appropriate gating points for both rat and mouse. The technique was applied to two preclinical scenarios: i) an acute (2 hour) reperfused model of MI in rats and ii) mice 2 days following non-reperfused MI.Results: LGE images from all animals revealed clear areas of enhancement allowing for easy volume segmentation. Typical inversion times required to null healthy myocardium in rats were between 300-450 ms equivalent to 2-3 R-waves and similar to 330 ms in mice, typically 3 R-waves following inversion. Data from rats was also validated against triphenyltetrazolium chloride staining and revealed close agreement for infarct size.Conclusion: The LGE protocol presented provides a reliable method for acquiring images of high contrast and quality without excessive scan times, enabling higher throughput in experimental studies requiring reliable assessment of MI

    The worldwide clinical trial research response to the COVID-19 pandemic - the first 100 days

    Get PDF
    Background: Never before have clinical trials drawn as much public attention as those testing interventions for COVID-19. We aimed to describe the worldwide COVID-19 clinical research response and its evolution over the first 100 days of the pandemic. Methods: Descriptive analysis of planned, ongoing or completed trials by April 9, 2020 testing any intervention to treat or prevent COVID-19, systematically identified in trial registries, preprint servers, and literature databases. A survey was conducted of all trials to assess their recruitment status up to July 6, 2020. Results: Most of the 689 trials (overall target sample size 396,366) were small (median sample size 120; interquartile range [IQR] 60-300) but randomized (75.8%; n=522) and were often conducted in China (51.1%; n=352) or the USA (11%; n=76). 525 trials (76.2%) planned to include 155,571 hospitalized patients, and 25 (3.6%) planned to include 96,821 health-care workers. Treatments were evaluated in 607 trials (88.1%), frequently antivirals (n=144) or antimalarials (n=112); 78 trials (11.3%) focused on prevention, including 14 vaccine trials. No trial investigated social distancing. Interventions tested in 11 trials with >5,000 participants were also tested in 169 smaller trials (median sample size 273; IQR 90-700). Hydroxychloroquine alone was investigated in 110 trials. While 414 trials (60.0%) expected completion in 2020, only 35 trials (4.1%; 3,071 participants) were completed by July 6. Of 112 trials with detailed recruitment information, 55 had recruited <20% of the targeted sample; 27 between 20-50%; and 30 over 50% (median 14.8% [IQR 2.0-62.0%]). Conclusions: The size and speed of the COVID-19 clinical trials agenda is unprecedented. However, most trials were small investigating a small fraction of treatment options. The feasibility of this research agenda is questionable, and many trials may end in futility, wasting research resources. Much better coordination is needed to respond to global health threats

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay

    Get PDF
    Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (Actinopterygii) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish (Takifugu rubripes) and zebrafish (Danio rerio), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity
    corecore