16 research outputs found

    Experimental determination of codon usage?dependent selective pressure on high copy?number genes in Saccharomyces cerevisiae

    Get PDF
    One of the central hypotheses in the theory of codon usage evolution is that in highly expressed genes particular codon usage patterns arise because they facilitate efficient gene expression and are thus selected for in evolution. Here we use plasmid copy number assays and growth rate measurements to explore details of the relationship between codon usage, gene expression level, and selective pressure in Saccharomyces cerevisiae. We find that when high expression levels are required optimal codon usage is beneficial and provides a fitness advantage, consistent with evolutionary theory. However, when high expression levels are not required, optimal codon usage is surprisingly and strongly selected against. We show that this selection acts at the level of protein synthesis, and we exclude a number of molecular mechanisms as the source for this negative selective pressure including nutrient and ribosome limitations and proteotoxicity effects. These findings inform our understanding of the evolution of codon usage bias, as well as the design of recombinant protein expression systems

    Past and future trends of Cryptosporidium in vitro research

    Get PDF
    Cryptosporidium is a genus of single celled parasites capable of infecting a wide range of animals including humans. Cryptosporidium species are members of the phylum apicomplexa, which includes well-known genera such as Plasmodium and Toxoplasma. Cryptosporidium parasites cause a severe gastro-intestinal disease known as cryptosporidiosis. They are one of the most common causes of childhood diarrhoea worldwide, and infection can have prolonged detrimental effects on the development of children, but also can be life threatening to HIV/AIDS patients and transplant recipients. A variety of hosts can act as reservoirs, and Cryptosporidium can persist in the environment for prolonged times as oocysts. While there has been substantial interest in these parasites, there is very little progress in terms of treatment development and understanding the majority of the life cycle of this unusual organism. In this review, we will provide an overview on the existing knowledge of the biology of the parasite and the current progress in developing in vitro cultivation systems. We will then describe a synopsis of current and next generation approaches that could spearhead further research in combating the parasite

    mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells

    Get PDF
    Many protein-based biotherapeutics are produced in cultured Chinese hamster ovary (CHO) cell lines. Recent reports have demonstrated that translation of recombinant mRNAs and global control of the translation machinery via mammalian target of rapamycin (mTOR) signalling are important determinants of the amount and quality of recombinant protein such cells can produce. mTOR complex 1 (mTORC1) is a master regulator of cell growth/division, ribosome biogenesis and protein synthesis, but the relationship between mTORC1 signalling, cell growth and proliferation and recombinant protein yields from mammalian cells, and whether this master regulating signalling pathway can be manipulated to enhance cell biomass and recombinant protein production (rPP) are not well explored. We have investigated mTORC1 signalling and activity throughout batch culture of a panel of sister recombinant glutamine synthetase-CHO cell lines expressing different amounts of a model monoclonal IgG4, to evaluate the links between mTORC1 signalling and cell proliferation, autophagy, recombinant protein expression, global protein synthesis and mRNA translation initiation. We find that the expression of the mTORC1 substrate 4E-binding protein 1 (4E-BP1) fluctuates throughout the course of cell culture and, as expected, that the 4E-BP1 phosphorylation profiles change across the culture. Importantly, we find that the eIF4E/4E-BP1 stoichiometry positively correlates with cell productivity. Furthermore, eIF4E amounts appear to be co-regulated with 4E-BP1 amounts. This may reflect a sensing of either change at the mRNA level as opposed to the protein level or the fact that the phosphorylation status, as well as the amount of 4E-BP1 present, is important in the co-regulation of eIF4E and 4E-BP1

    Human TorsinA can function in the yeast cytosol as a molecular chaperone

    Get PDF
    TorsinA (TorA) is an AAA+ ATPAse linked to dystonia type 1 (DYT1), a neurological disorder that leads to uncontrollable muscular movements. Although DYT1 is linked to a 3bp deletion in the C terminus of TorA, the biological function of TorA remains to be established. Here we use the yeast Saccharomyces cerevisiae as a tractable in vivo model to explore TorA function. We demonstrate that TorA can protect yeast cells against different forms of environmental stress and show that in the absence of the molecular disaggregase Hsp104, TorA can refold heat-denatured luciferase in vivo in an ATP-dependent manner. However, this activity requires TorA to be translocated to the cytoplasm from the ER in order to access and process cytoplasmic protein aggregates. Furthermore, mutational or chemical inactivation of the ATPase activity of TorA blocks this activity. We also find that TorA can inhibit the propagation of certain conformational variants of [ PSI +], the aggregated prion form of the endogenous Sup35 protein. Finally, we show that while cellular localisation remains unchanged in the dystonia-linked TorA mutant ?E302-303, the ability of this mutant form of TorA to protect against cellular stress and to facilitate protein refolding, is impaired, consistent with it being a loss of function mutation

    Engineering the Chaperone Network of CHO Cells for Optimal Recombinant Protein Production and Authenticity

    No full text
    All proteins fold into a defined three-dimensional shape that is compatible with the cellular role and/or biological activity of those proteins. Molecular chaperones are a family of proteins whose role is to assist the folding and targeting of proteins in both normal and stressed cells. The rational manipulation of chaperone levels in a cell line engineered to produce a defined recombinant protein (rP) can significantly improve both the achievable steady-state levels and authenticity of a wide range of recombinant proteins. Here, we describe the methodology associated with expressing a variety of molecular chaperones in Chinese hamster ovary (CHO) lines in order to improve their recombinant protein production capacity. These chaperones include both those that facilitate the folding of the polypeptide chain (i.e. Hsp70, Hsp40) and those that can re-fold proteins that have misfolded in the cell (i.e. ClpB/Hsp104). This latter property is particularly important given the propensity for highly expressed recombinant proteins to misfold in the “foreign” cellular environment
    corecore