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Abstract 
 
One of the central hypotheses in the theory of codon usage evolution is that in highly 

expressed genes particular codon usage patterns arise because they facilitate efficient gene 

expression and are thus selected for in evolution. Here we use plasmid copy number assays 

and growth rate measurements to explore details of the relationship between codon usage, 

gene expression level, and selective pressure in Saccharomyces cerevisiae. We find that when 

high expression levels are required optimal codon usage is beneficial and provides a fitness 

advantage, consistent with evolutionary theory. However, when high expression levels are 

not required, optimal codon usage is surprisingly and strongly selected against. We show that 

this selection acts at the level of protein synthesis, and we exclude a number of molecular 

mechanisms as the source for this negative selective pressure including nutrient and 

ribosome limitations and proteotoxicity effects. These findings inform our understanding of 

the evolution of codon usage bias, as well as the design of recombinant protein expression 

systems. 
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Introduction 

 

Because the genetic code uses 64 codons to encode 20 amino acids (Crick, Barnett, Brenner,& 

Watts-Tobin, 1961), most amino acids can be encoded by multiple synonymous codons. In all 

organisms where codon usage has been investigated, synonymous codons are not used 

randomly but some codons are preferred over others (see eg Behura & Severson, 2013) for a 

recent review). Correlations between biased codon usage and a number of other parameters 

have been detected including cellular tRNA content (Ikemura, 1982), translational efficiency 

(Sharp & Li, 1986), translational accuracy (Zhou, Weems, & Wilke, 2009), RNA structure (Hartl, 

Moriyama, & Sawyer, 1994), protein structure (Oresic, Dehn, Korenblum, & Shalloway, 2003), 

genomic GC content (Comeron, Kreitman, & Aguade, 1999), recombination (Comeron et al., 

1999), splicing (Chamary & Hurst, 2005), and gene conversion rates (Galtier, 2003).  

 

Translational efficiency has gained experimental support as one causative parameter that can 

lead to codon usage bias (Carlini & Stephan, 2003; Chu et al., 2014; Hense et al., 2010; Zhou 

et al., 2013). Since synonymous mutations can have substantial effects on expressed protein 

levels, selection for high gene expression levels will favour codon usage patterns compatible 

with such high levels, but will avoid patterns that restrict attainable expression levels. 

However, the exact relationship between codon usage, protein expression, other associated 

parameters and selective pressure are still unclear.  

 

One issue is that selective pressure is difficult to measure directly as an experimental 

parameter. Moriya et al. used copy number variations in high copy number vectors in 

Saccharomyces cerevisiae to estimate the direction and extent of selective pressure when 

these vectors contained different genes (Makanae, Kintaka, Makino, Kitano, & Moriya, 2013; 

Moriya, Shimizu-Yoshida, & Kitano, 2006). While natural 2 micron circles employ a 

sophisticated system to stabilise copy numbers (McQuaid et al., 2017), yeast cloning vectors 

containing solely the 2 micron origin of replication exhibit strong copy number variations and 

appear to be inherited in a stochastic fashion (Moriya et al., 2006). In cases where such 

vectors contain genes that affect the growth rate of the cell in a copy-number dependent 

fashion, cells with reduced or increased copy number (depending on whether the gene in 

question has a negative or positive effect on growth rate) have a growth advantage. Since 

such cells are also more likely to produce daughter cells with copy numbers that are lower/ 

higher than the population average, the average copy number per cell changes until a new 

balance is achieved between the effect of the gene on growth rates, the metabolic cost of 

maintaining high numbers of vectors in the cell, and the ability to successfully inherit the 

vector and its selectable marker to the majority of daughter cells. 

 

Here, we introduce reporter genes with differing codon usage into 2 micron cloning vectors 

and study the effect of varying codon usage on the high-copy number vector content and 

growth rate of transformed yeast cells. Surprisingly, our results suggest that codon 

optimisation is selected against unless high level expression of the gene provides a 

competitive growth advantage. 

  



Results   

 

Selection against high copy numbers of a codon optimised gene in yeast 

 

We previously described a dual luciferase reporter system allowing us to assess the effect of 

codon usage variation on Firefly luciferase expression levels (Chu et al., 2014; Chu, Barnes, & 

von der Haar, 2011). The original reporter system was implemented using centromeric (low 

copy number) vectors, which contained three different Firefly luciferase variants encoded 

only by unfavourable codons (minFLuc), by the wild-type gene from Photinus pyralis which 

has random codon usage from the point of view of yeast (staFLuc), or by the fully 

codonadapted gene (maxFLuc). All vectors also contained an invariant Renilla luciferase gene 

for normalisation. For this vector system we had demonstrated that the expression ratio 

measured using dual luciferase assays corresponds well to the expression ratio measured by 

western blotting (Chu et al., 2011). We were therefore surprised to observe that, when the 

same expression system was implemented in multi-copy vectors based on the 2 micron origin 

of replication, the codon-dependent variation in expression levels was indistinguishable from 

the centromeric system when measured in dual luciferase assays, but differed markedly when 

assessed using western blots (figure 1). Note that all experiments shown in the current study 

were conducted with cytoplasmic firefly luciferase variants which contain deletions of the last 

three amino acids to remove a peroxisomal targeting signal (Chu et al., 2014).  

 

We reasoned that our results could be explained if plasmid copy numbers changed 

substantially between expression plasmids containing the different codon usage variants. The 

dual luciferase assay measures expression normalised per plasmid, whereas the western 

blotting approach measures total numbers per cell, so that changes in plasmid copy number 

would only become visible in the latter assay. To test this assumption directly we measured 

the plasmid copy number for the different luciferase variants using a qPCR approach, and 

found that introduction of poorly adapted, wild type, and strongly codon adapted sequences 

sequentially reduced the steady-state plasmid copy number over a four-fold range compared 

to the vector control (a plasmid which only expresses Renilla luciferase but no firefly 

luciferase, figure 2b). This implies that expression of a strongly codon-adapted gene is less 

favourable and more strongly selected against than expression of weakly codon adapted 

genes. This effect is also visible at the levels of the growth rates of the respective 

transformants, which become successively reduced with increasing codon adaptation of the 

recombinant genes (figure 2c). This reduced growth rate appears due to lower cell division 

rates, as we do not detect any changes in the proportion of viable cells (data not shown).  

 

Copy number selection is dependent on translational activity  

 

To test whether selection against codon optimised genes in this system arose at the level of 

protein synthesis, we introduced a point mutation into the codon adapted maxFLuc construct 

that resulted in a premature stop signal at the fifth codon of the open reading frame (maxFLuc 

K5X). This prevents almost all of the translational activity on the mRNA, without significantly 

affecting the overall sequence or nucleotide composition of the construct nor the 

transcriptional activity of the promoter. The K5X mutation substantially rescued both the 

reduction in plasmid copy number and the reduction in growth rate observed with the 



translated maxFLuc construct (figure 3). Thus, the major effect on fitness requires ongoing 

translation of the full-length ORF.  

 

We explored a number of potential mechanisms which by our reasoning could have caused  

the selection against codon optimisation. We determined that the three constructs produced  

approximately 2.1x10-14, 4.5x10-14 and 5.9x10-14 g firefly luciferase protein per cell (figure 4A).  

In other words, the highest expressing construct produced just over 1% of the 5x10-12 g of  

protein contained in a haploid yeast cell (von der Haar, 2007). Most of the resources required  

for protein synthesis, including amino acids and energy, should scale linearly with the amount  

of protein made, and a 1-2% increase in resource usage would be unlikely to cause a 10-20%  

reduction in growth rate. Consistently, we do not observe any change in the effect of maxFLuc  

expression on the growth rate if we double the concentration of carbon, nitrogen, or amino  

acids in the medium (figure 4B).   

 

We and others previously predicted that, under fast growth conditions, providing ribosomes  

for the expression of additional proteins could only be accommodated at the cost of reduced  

growth (Chu et al., 2011; Chu & von der Haar, 2012; Shah, Ding, Niemczyk, Kudla, & Plotkin,  

2013). We therefore estimated the number of ribosomes required to produce the observed  

protein levels from the three FLuc variants. This number essentially scales with the number  

of proteins produced per unit time, and inversely scales with the time spent to complete  

translation of the ORF (ie more ribosomes are needed to make more protein at the same  

speed, but less ribosomes are needed to make the same amount of protein at higher speed).  

In the case of our FLuc constructs, the increased speed of translation outweighs the more  

frequent initiation events for the maxFLuc construct, resulting in a predicted net decrease of  

ribosome usage with increasing codon optimisation (figure 4C). This decrease in ribosome  

usage for codon optimised genes is expected, and is thought to be one of the genome-wide  

drivers for codon optimisation as this maximises cell-wide ribosome availability (Shah &  

Gilchrist, 2011). In the context of our experiments, it rules out that ribosome shortages  

explain the selective pressure against codon optimised constructs. We also analysed whether  

tRNA shortages might explain the observed reduction in growth rate, but again find that  

tRNAs should actually be most limiting for the least optimised construct which is decoded by  

the highest proportion of low-abundance tRNAs (the average tRNA gene copy number per  

codon is 7.6, 10.2 and 12.6 for min, sta and maxFLuc, respectively).   

 

Lastly, we reasoned that simple proteotoxic effects might explain our results. However, the  

responsiveness of a maxFLuc expressing construct to the proteotoxic drug AZC (Trotter,  

Berenfeld, Krause, Petsko, & Gray, 2001) is unaltered (figure 4D), even though we would  

expect that any pre-existing proteotoxicity should increase the sensitivity to this drug. We  

also did not detect any significant increases in the expression of the disaggregase Hsp104,  

which is usually induced under conditions of proteotoxic stress (figure 4E, Bösl, Grimminger,  

& Walter, 2006).   

 

In summary, although we clearly observe negative selective pressure against codonoptimised  

firefly luciferase, our experiments do not offer a simple explanation for this effect.   

 

  



The effect of high copy number codon adapted genes on fitness is context dependent   

 
While we have no immediate mechanistic explanation for the strong negative selective  

pressure arising from codon optimisation in our construct, selection against the optimisation   

of a gene that is of no benefit to the cell makes some sense from an evolutionary perspective.  

To test how the dynamics of negative and positive selection interplay in the case of proteins  

that are of benefit to the cell, we repeated the FLuc expression experiments with the HIS3  
gene, a natural yeast gene which catalyses the 6th step of the histidine biosynthesis pathway  

(Struhl & Davis, 1977). The yeast strain used in our experiments carries a chromosomal his3  
deletion and can only grow in the absence of histidine if the gene is provided  

extrachromosomally.   

 

We determined the growth rates of yeast strains containing poorly adapted, wild-type, and  

well adapted HIS3 genes under three different growth conditions. In the presence of 

histidine  in the growth medium, the gene is not beneficial to the cell, similar to the FLuc genes 

in the  experiments described above. In contrast, in the absence of histidine HIS3 is essential,  

although it is not required at high expression levels (Chu et al., 2014). Lastly, in the absence  

of histidine and the presence of a competitive inhibitor of His3 enzymatic activity, 3-  

aminotriazole (3-AT), high levels of His3 protein are required to overcome the inhibitor  

(Durfee et al., 1993).   

 

When His3 is not required, we observe a similar pattern of consecutively reduced fitness as  

for the FLuc genes (figure 5, upper panel). This confirms that the fitness effects observed upon  

high level FLuc expression are not specific to heterologous proteins and hold also upon 

highlevel  expression of a homologous gene. When low level His3 activity is required, the 

effect of  the different constructs on growth rates is initially relatively unaffected, although 

codon  usage effects become statistically insignificant. This lack of significance is possibly 

attributable  to the lower number of repeats used for this condition (figure 5, middle panel). 

However  when very high His3 levels are required in the presence of 3-AT, the codon-

optimised gene  confers a clear fitness advantage over the less optimised genes (figure 5, 

bottom panel). Links  between preferred codon usage and the requirement for high 

expression levels have  previously been established largely by way of correlation, our 

observations provide  experimental confirmation of this notion.   

 

To ask whether the effect of codon usage on selective pressure is quantitatively determined  

by basic yeast physiology, or is dependent on the genetic background of the strain in question,  

we compared the growth rates of a number of genetically tractable strains from the  

Saccharomyces genome resequencing project (SGRP, Cubillos, Louis, & Liti, 2009) in the  

presence and absence of the maxFLuc gene (figure 6). We found that the proportional  

reduction in growth rate upon expression of the gene ranged from 10% in the mildest affected  

strains, to 50% in the worst affected strains. Although many of the SGRP strains flocculate  

strongly and determination of growth rates for these strains is less accurate than for BY4741,  

this wide range indicates that the genetic make-up of strains strongly modulates the  

correspondence between codon usage and selective pressure.   

 

  



Discussion   

 
Codon usage bias is thought to arise from an interplay between evolutionary drift, ie  

stochastic changes of one codon for another, and evolutionary selection, ie the effect of  

growth advantages arising through the use of particular subsets of codons in particular 

subsets of genes (Shah and Gilchrist, 2011). Our work highlights an unexpected element of  

such selection which appears to act against the use of normally favoured codons when these  

are used out of their normal context.   

 

In interpreting our results, it is useful to define in how far plasmid copy number changes  

reflect selection mechanisms applying during the actual evolution of organisms. Codon usage  

is thought to have effects at both the individual gene level and at genome-wide levels. Effects  

at individual gene level include permitting high translational activity or conversely restricting  

translational activity to low levels (Tarrant & von der Haar (2014) and references therein), as  

well as effects on RNA stability (Presnyak et al., 2015) and transcriptional activity (Zhou et al.,  

2016). Genome-wide effects include compliance with particular GC bias (Palidwor, Perkins, &  

Xia, 2010), optimisation of ribosome usage by reducing the average dwell time of ribosomes  

on mRNAs (Chu & von der Haar, 2012; Shah et al., 2013) and other effects (Plotkin & Kudla,  

2011). Genes contained in high copy number plasmids are in principle subject to effects at  

both levels, but because changing the sequence of such a plasmid is equivalent to changing  

the sequence of multiple genes simultaneously in the genome, we expect the selective forces  

acting on this system to be more similar to genome-wide selective forces than would be the  

case in a single copy plasmid.   

 

The observation of particularly strong codon usage bias in highly expressed genes (Sharp,  

Tuohy, & Mosurski, 1986) implies that highly expressed genes show such bias, but also that  

low-expressed genes do not. It is thought that the absence of bias in genes with low  

expression levels arises because codon usage is at equilibrium, rather than being selected  

against (Sharp, Emery, & Zeng, 2010). Interestingly, our data suggest that codon bias can be  

selected against in genes with low expression levels. Moreover, the successive reduction in  

plasmid copy numbers with increasing codon optimisation (figure 2) suggests that negative  

selection is not restricted to extreme codon usage but applies to genes with close to  

equilibrium codon usage. Consistent with this notion, statistical enrichment of non-preferred  

codons in low expressed genes has been shown in some studies (Neafsey & Galagan, 2007).   

 

The principal underlying assumption for explaining codon usage bias in highly expressed  

genes, that codon usage is selected for when high expression levels are required, has  

widespread support and is generally accepted. However, to our knowledge this has never  

been directly experimentally tested. By linking codon usage variants of the endogenous yeast  

HIS3 gene to growth conditions where this gene is required at different expression levels, 

we  provide an experimental test for this hypothesis. Our findings are entirely consistent with 

the  prevailing hypothesis.   

 

While our results are informative for understanding basic evolutionary mechanisms, they also  

provide useful information for the design of recombinant protein expression systems. 2  

micron vector systems are used for the production of various yeast-derived  

biopharmaceuticals (Finnis et al., 2010; Gerngross, 2004; Thim et al., 1986). If plasmid copy  



numbers in these cases are subject to the same effects we describe here, productivity could  

be boosted by introducing measures that stabilise plasmid copy number, although this could  

also produce adverse effects by increasing the selection for non-expressing mutants. The  

observation of substantial strain variability in the effect of recombinant gene expression on  

growth rates (figure 6) also indicates that the genetic variability of yeast could be harnessed  

for balancing these effects in order to stabilise high level expression systems.   

 

Materials and Methods   

 
Strains, plasmids and media. The main yeast strain used was BY4741 (Mata ura3ǻ0 his3ǻ0  
leu2ǻ0 met15ǻ0, Brachmann et al., 1998). Genetically tractable strains from the SGRP  

collection (Cubillos et al., 2009) were obtained from the National Collection of Yeast Cultures  

(NCYC, UK, haploid Mata strains from SGRP strain set 2). Luciferase expression vectors were  

generated by transferring XmaI/EcoRI RLuc and BamHI/SalI CFLuc fragments from the  

centromeric vectors described in (Chu et al., 2014) into pBEVY-U (Miller, Martinat, & Hyman,  

1998). HIS3 expression vectors were generated by cloning the C-terminally HA-tagged HIS3  
variants described in (Chu et al., 2014) as BamHI/PstI fragments into the same vector. 

Plasmid  sequences, maps, and the plasmids themselves are available through Addgene (table 

1). Yeast  strains were transformed as described (Gietz & Schiestl, 2007) and grown in SC -Ura 

medium  (2% glucose, 0.67% Yeast Nitrogen Base without amino acids [BD, UK], and Kaiser 

Synthetic  Complete Drop-Out Mixture lacking uracil [Formedium, UK] as indicated in the  

manufacturer͛s instructions).   

 

Growth rate measurements. Growth rates were measured in 24- or 48-well cell culture plates  

using automated plate readers. 1 ml medium per well (0.5 ml for 48-well plates) were  

inoculated with material from transformed yeast colonies grown on selective agar plates and  

grown overnight in a standard shaking incubator. Following overnight growth, 1 ml or 0.5 ml  

of fresh medium per well contained in a new plate was inoculated with 10 ʅl or 5 ʅl of culture  

from the overnight plate. Plates were then incubated in Spectrostar Nano plate readers (BMG  

Lab Tech, UK) and incubated at 30°C under constant shaking, with automated oD  

measurements every 30 minutes until the culture had reached stationary phase. To analyse  

the resulting data, logarithmic curves were fitted to seven-time-point windows along the  

entire incubation time, and the highest growth rate returned from this fitting exercise was  

reported as the maximum logarithmic growth rate for each well.   

 

qPCR assays. These were adapted from the procedure described in (Moriya et al., 2006).  

Briefly, 2 oD600 units of cells were resuspended in 850 ʅl of 1.2 M sorbitol, 100 ʅl of 200 mM  

sodium phosphate buffer (pH 7.2), and 50 ʅl lyticase (Sigma Aldrich, UK, L2524, resuspended  

in sodium phosphate buffer at 5 units/ ʅl). The suspension was incubated at 37°C for 30  

minutes, and then subjected to 3 cycles of incubation for ten minutes at 95°C followed by  

incubation for fifteen minutes at -80°. The extract was clarified by centrifugation in a  

microcentrifuge at 13,000 rpm for 5 minutes, and 0.1 ʅl of the supernatant were used as input  

for the qPCR reactions.   

For the latter, we used primers against the URA3 marker gene on the pBEVY-U vectors  

(qURA3f, AGCAGAATTGTCATGCAAGG, qURA3r, TTCCACCCATGTCTCTTTGA) and against the  

LEU3 gene for standardisation (Chu et al., 2014). qPCR reactions were assembled using  

QuantiFast SYBR Green PCR Kits (QIAgen, UK) according to the manufacturer͛s instructions,  



and reactions were run using a two-step amplification protocol. Ct values were determined  

in the logarithmic amplification range and converted to fold change values as described 

(Pfaffl, 2001). All reported data were determined using triplicate biological replicates, each  

assayed in technical duplicate.   

 

Protein extraction and western blotting were conducted as described (von der Haar, 2007),  

using antibodies from Sigma-Aldrich, UK (anti-firefly luciferase, L0159, anti-HA tag, H6908,  

and peroxidase-labelled anti-rabbit IgG, A9169). Anti-Hsp104 antibodies were as described  

(Adam, Jossé, & Tuite, 2017).   

 

Data analysis and statistics. Data were analysed using Python in the Jupyter Notebook  

environment. All raw data and data analysis scripts used to prepare individual figures are  

available for download from Github1. Statistical significance between samples was tested  

using ANOVA followed by Tukey͛s Honestly Significant Difference test.   

 

To calculate the numbers of ribosomes required for synthesis of the different luciferase  

variants, absolute numbers of luciferase molecules per cell were first determined using  

quantitative western blotting approach as described (von der Haar, 2007) and purified firefly  

luciferase (Sigma-Aldrich, UK) as standard. The resulting values were 208000, 441000, and  

589000 molecules per cell for the min, sta and max constructs respectively (rounded to the  

nearest thousand). staFLuc protein turnover rate was determined by monitoring loss of the  

firefly luciferase signal in western blots following treatment of growing cells with  

cycloheximide, and was found to be 0.008 min-1. This rate was assumed to be equal for the  

min and max constructs. Transit times for ribosomes over the different FLuc variants were  

used as published (Chu et al., 2014) and are 308, 141, and 68.6 seconds for min, sta and max,  

respectively, and the cellular ribosome pool was assumed to be 185000 ribosomes per haploid  

cell (von der Haar, 2008).   

 

The proportion of ribosomes required in the steady state for synthesis of the different FLuc  

variants was then calculated as   

 ܾܴ݅ܰ  ܿݑܮܨݐ כ (ܿݑܮܨ߬ + ȝ) כ ܿݑܮܨܰ  = ܴ 
 

where NFLuc is the number of luciferase molecules per cell, NRibo the number of ribosomes per  

cell, ʅ the growth rate, ʏFLuc the luciferase turnover rate, and tFLuc the time it takes for a  

ribosome to transit the luciferase open reading frame.   
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Figure Legends

Figure 1. Expression levels of three codon usage variants of firefly luciferase. Expression levels 

were assessed either by dual luciferase assay and are shown as the ratio of expression between the 

variant firefly luciferases and an invariant Renilla luciferase gene also contained in the expression 

vectors (black and grey dots, n = 8), or were assessed by western blotting in which case they are 

shown as absolute firefly expression levels (not normalised to Renilla levels, n = 3).

Figure 2. The expression of different firefly luciferase variants generates distinct fitness defects. A, 

the steady state copy number of 2 micron plasmids is modulated by the genes they contain. B, 

increasingly optimised codon usage leads to a decrease in steady state plasmid copy numbers as 

assessed by real time PCR (n=3). C, increasingly optimised codon usage in the recombinant 

luciferase gene leads to a decrease in growth rate (n = 6). In both panels B and C, �vector� refers to 

a vector expressing only Renilla luciferase without a firefly luciferase gene. Statistical significance of 

results was assessed by ANOVA and Tukeys� HSD test. Significance to the vector control is indicated 

as: ns, p>0.05; **, p<0.01; ***, p<0.001.

Figure 3. Fitness defects associated with the expression of codon optimised firefly luciferase are 

dependent on translation of the gene. A, plasmid copy numbers of a vector containing the codon 

optimised gene, the same gene with a nonsense mutation in the fifth codon, or the vector control 

are indicated (n = 3). B, growth rate defects of the same strains as in panel A (n = 6). Statistical 

significance of results was assessed by ANOVA and Tukeys� HSD test. Significance to the vector 

control is indicated as: ns, p>0.05; *, p<0.05; **, p<0.01.

Figure 4. Exploring the mechanistic origin of fitness defects associated with the expression of a 

codon-optimised gene. A, the number of protein molecules per cell expressed from the staFLuc 

gene was determined by comparing western blot signals of recombinant luciferase with signals 

derived from controlled numbers of cells. B, estimated numbers of ribosomes required at steady 

state for translation of the different codon variants (see text for explanation). C, growth rate defects 

associated with expression of the codon optimised firefly luciferase gene are not altered in media 

supplemented with different nutrients (n=4). D, sensitivity of yeast strains containing the codon 

optimised firefly luciferase gene or a vector control to the protein unfolding drug azetidine-2-

carboxylic acid (AZC). E, expression levels of the molecular chaperone Hsp104 (relative to the 

loading control Pgk1).

Figure 5. The interplay between required gene expression levels and fitness effects arising from 

codon optimisation. Growth rates of strains with a chromosomal deletion of the HIS3 gene but 

containing codon variants of the same gene on 2 micron plasmids are shown. The plasmid borne-

gene is expected to be superfluous in -Ura medium as this contains histidine, essential but required 

at low expression levels in -Ura/-His medium; and essential and required at high expression levels in 

the same medium containing 3-aminotriazole (3-AT), a competitive inhibitor of His3 enzymatic 

activity. Statistical significance of results was assessed by ANOVA and Tukeys� HSD test. n>=3 for all 

conditions. Significance to the vector control (top panel) or to the minHIS3 strains (middle and 

bottom panels) is indicated as: ns, p>0.05; ***, p<0.001.

Figure 6. Fitness defects caused by expression of codon optimised firefly luciferase are strain 

dependent. Top, growth rates of strains containing the maxFLuc vector (grey dots) or a control 

vector (black dots). Strains are shown in descending order of average growth rate when containing 

the vector control construct (n = 3). Bottom, average growth rate loss in % for strains containing the 

firefly luciferase gene compared to the vector control.
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Figure 1. Expression levels of three codon usage variants of firefly luciferase. Expression levels were 

assessed either by dual luciferase assay and are shown as the ratio of expression between the variant firefly 

luciferases and an invariant Renilla luciferase gene also contained in the expression vectors (black and grey 

dots, n = 8), or were assessed by western blotting in which case they are shown as absolute firefly 

expression levels (not normalised to Renilla levels, n = 3). 
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Figure  � ��� expression of different firefly luciferase variants generates distinct fitness defects. A, the 

steady state copy number of  2icron plasmids is modulated by the genes they contain. B, increasingly 

optimised codon usage leads to a decrease in steady state plasmid copy numbers as assessed by real time 

PCR (n=3). C, increasingly optimised codon usage in the recombinant luciferase gene leads to a decrease in 

growth rate (n = 6). In both panels B and C, “vector” refers to a vector expressing only Renilla luciferase 

without a firefly luciferase gene. Statistical significance of results was assessed by ANOVA and Tukeys’ HSD 

test. Significance to the vector control is indicated as: ns, p>0.05; **, p<0.01; ***, p<0.001. 
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Figure 3. Fitness defects associated with the expression of codon optimised firefly luciferase are dependent 

on translation of the gene. A, plasmid copy numbers of a vector containing the codon optimised gene, the 

same gene with a nonsense mutation in the fifth codon, or the vector control are indicated (n = 3). B, 

growth rate defects of the same strains as in panel A (n = 6). Statistical significance of results was assessed 

by ANOVA and Tukeys’ HSD test. Significance to the vector control is indicated as: ns, p>0.05; *, p<0.05; 

**, p<0.01. 
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Figure 5. The interplay between r���r�d gene expression levels and fitness effects arising from codon 

optimisation� �r���� rates of strains with a chromosomal deletion of the HIS3 gene but containing codon 

variants of the same gene on � �icron plasmids are shown. The plasmid borne-��n� is expected to be 

superfluous in -�r� medium as this contains histidine, essential but r���r�� at low expression lev��� �n -

�r�/-�is medium; and essential and reuired at high expression levels in the same medium containing 3-
aminotriazole (3-�!"# a competitive inhibitor of His3 �nze�atic activity. Statistical significance of results was 

assessed by ANOVA and Tukeys’ HSD test. n>=3 for all conditions. Significance to the vector control (top 

panel) or to the minHIS3 strains (middle and bottom panels) is indicated as: ns, p>0.05; ***, p<0.001. 
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Figure 6. Fitness defects caused by expression of codon optimised firefly luciferase are strain dependent. 

Top, growth rates of strains containing the maxF')c vector (grey dots) or a control vector (black dots). 

Strains are shown in descending order of average growth rate when containing the vector control construct 

(n = 3). Bottom, average growth rate loss in * +,r strains containing the firefly luciferase gene compared to 

the vector control. 
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Table 1. P.asmids used in this study.

Plasmid Description Addgene ID Reference

pBEVY-U 2 micron URA3 vector containing TDH3 

and ADH1-based promoter sequences

51230 (Miller et 

al., 1998)

pTH646 pBEVY-U expressing Renilla luciferase 40600 this study

pTH731 pTH646 also expressing minCFLuc 40601 this study

pTH732 pTH646 also expressing staCFLuc 40607 this study

pTH733 pTH646 also expressing maxCFLuc 40608 this study

pTH734 pTH646 also expressing maxCFLuc (K5X) 40609 this study

pTH719 pBEVY-U expressing minHIS3 40610 this study

pTH720 pBEVY-U expressing staHIS3 40611 this study

pTH721 pBEVY-U expressing maxHIS3 40612 this study
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