69 research outputs found
Repetitive arm functional tasks after stroke (RAFTAS): a pilot randomised controlled trial
Background
Repetitive functional task practise (RFTP) is a promising treatment to improve upper limb recovery following stroke. We report the findings of a study to determine the feasibility of a multi-centre randomised controlled trial to evaluate this intervention.
Methods
A pilot randomised controlled trial was conducted. Patients with new reduced upper limb function were recruited within 14 days of acute stroke from three stroke units in North East England. Participants were randomised to receive a four week upper limb RFTP therapy programme consisting of goal setting, independent activity practise, and twice weekly therapy reviews in addition to usual post stroke rehabilitation, or usual post stroke rehabilitation. The recruitment rate; adherence to the RFTP therapy programme; usual post stroke rehabilitation received; attrition rate; data quality; success of outcome assessor blinding; adverse events; and the views of study participants and therapists about the intervention were recorded.
Results
Fifty five eligible patients were identified, 4-6% of patients screened at each site. Twenty four patients participated in the pilot study. Two of the three study sites met the recruitment target of 1-2 participants per month. The median number of face to face therapy sessions received was 6 [IQR 3-8]. The median number of daily repetitions of activities recorded was 80 [IQR 39-80]. Data about usual post stroke rehabilitation were available for 18/24 (75%). Outcome data were available for 22/24 (92%) at one month and 20/24 (83%) at three months. Outcome assessors were unblinded to participant group allocation for 11/22 (50%) at one month and 6/20 (30%) at three months. Four adverse events were considered serious as they resulted in hospitalisation. None were related to study treatment. Feedback from patients and local NHS therapists about the RFTP programme was mainly positive.
Conclusions
A multi-centre randomised controlled trial to evaluate an upper limb RFTP therapy programme provided early after stroke is feasible and acceptable to patients and therapists, but there are issues which needed to be addressed when designing a Phase III study. A Phase III study will need to monitor and report not only recruitment and attrition but also adherence to the intervention, usual post stroke rehabilitation received, and outcome assessor blinding
Core Health Outcomes in Childhood Epilepsy (CHOICE): Development of a core outcome set using systematic review methods and a Delphi survey consensus
OBJECTIVE: Establishing a core set of outcomes to be evaluated and reported in intervention trials aims to improve the usefulness of health research. There is no established core outcome set (COS) for childhood epilepsies. The aim of this study was to select a COS to be used in evaluative research of interventions for children with rolandic epilepsy (RE).METHODS: We followed guidance from the COMET (Core Outcome Measures in Effectiveness Trials) Initiative. First, we identified outcomes that had been measured in research through a systematic review. Second, young people with RE, parents, and professionals were invited to take part in a Delphi survey in which participants rated the importance of candidate outcomes. Last, a face-to-face meeting was convened to seek consensus on which outcomes were critical to include and to ratify the final COS.RESULTS: From 37 eligible papers in the review, we identified and included 48 candidate outcomes in the survey. We sent invitations to 165 people registered to take part in the survey; of these, 102 (62%) completed Round 1, and 80 (78%) completed Round 2 (three young people, 16 parents, 61 professionals). In Round 2 we included four additional outcomes suggested by participants in Round 1. The consensus meeting included two young people, four parents, and nine professionals who were eligible to vote and ratified the COS as 39 outcomes across 10 domains.SIGNIFICANCE: Our methodology was a proportionate and pragmatic approach toward producing a COS for evaluating research on interventions aiming to improve the health of children with RE.</p
The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins
Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell
DNA Methylation and Gene Expression Changes in Monozygotic Twins Discordant for Psoriasis: Identification of Epigenetically Dysregulated Genes
Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%–80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4+ and CD8+ cells using Illumina's HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4+ cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease
Initial Genomics of the Human Nucleolus
We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture
ARRDC3 suppresses breast cancer progression by negatively regulating integrin β4
Large-scale genetic analyses of human tumor samples have been used to identify novel oncogenes, tumor suppressors and prognostic factors, but the functions and molecular interactions of many individual genes have not been determined. In this study we examined the cellular effects and molecular mechanism of the arrestin family member, ARRDC3, a gene preferentially lost in a subset of breast cancers. Oncomine data revealed that the expression of ARRDC3 decreases with tumor grade, metastases and recurrences. ARRDC3 overexpression represses cancer cell proliferation, migration, invasion, growth in soft agar and in vivo tumorigenicity, whereas downregulation of ARRCD3 has the opposite effects. Mechanistic studies showed that ARRDC3 functions in a novel regulatory pathway that controls the cell surface adhesion molecule, β-4 integrin (ITGβ4), a protein associated with aggressive tumor behavior. Our data indicates ARRDC3 directly binds to a phosphorylated form of ITGβ4 leading to its internalization, ubiquitination and ultimate degradation. The results identify the ARRCD3-ITGβ4 pathway as a new therapeutic target in breast cancer and show the importance of connecting genetic arrays with mechanistic studies in the search for new treatments
Computational Model of the Insect Pheromone Transduction Cascade
A biophysical model of receptor potential generation in the male moth olfactory receptor neuron is presented. It takes into account all pre-effector processes—the translocation of pheromone molecules from air to sensillum lymph, their deactivation and interaction with the receptors, and the G-protein and effector enzyme activation—and focuses on the main post-effector processes. These processes involve the production and degradation of second messengers (IP3 and DAG), the opening and closing of a series of ionic channels (IP3-gated Ca2+ channel, DAG-gated cationic channel, Ca2+-gated Cl− channel, and Ca2+- and voltage-gated K+ channel), and Ca2+ extrusion mechanisms. The whole network is regulated by modulators (protein kinase C and Ca2+-calmodulin) that exert feedback inhibition on the effector and channels. The evolution in time of these linked chemical species and currents and the resulting membrane potentials in response to single pulse stimulation of various intensities were simulated. The unknown parameter values were fitted by comparison to the amplitude and temporal characteristics (rising and falling times) of the experimentally measured receptor potential at various pheromone doses. The model obtained captures the main features of the dose–response curves: the wide dynamic range of six decades with the same amplitudes as the experimental data, the short rising time, and the long falling time. It also reproduces the second messenger kinetics. It suggests that the two main types of depolarizing ionic channels play different roles at low and high pheromone concentrations; the DAG-gated cationic channel plays the major role for depolarization at low concentrations, and the Ca2+-gated Cl− channel plays the major role for depolarization at middle and high concentrations. Several testable predictions are proposed, and future developments are discussed
Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses
We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K v 1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca 2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K + and Ca 2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K + channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca 2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca 2+ signaling. Electric fields enhanced Ca 2+ spike amplitude and triggered formation of a second traveling Ca 2+ wave. Mibefradil blocked Ca 2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca 2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46726/1/249_2005_Article_1.pd
Recommended from our members
Aficamten and Cardiopulmonary Exercise Test Performance
Importance
Impaired exercise capacity is a cardinal manifestation of obstructive hypertrophic cardiomyopathy (HCM). The Phase 3 Trial to Evaluate the Efficacy and Safety of Aficamten Compared to Placebo in Adults With Symptomatic Obstructive HCM (SEQUOIA-HCM) is a pivotal study characterizing the treatment effect of aficamten, a next-in-class cardiac myosin inhibitor, on a comprehensive set of exercise performance and clinical measures.
Objective
To evaluate the effect of aficamten on exercise performance using cardiopulmonary exercise testing with a novel integrated measure of maximal and submaximal exercise performance and evaluate other exercise measures and clinical correlates.
Design, Setting, and Participants
This was a prespecified analysis from SEQUOIA-HCM, a double-blind, placebo-controlled, randomized clinical trial. Patients were recruited from 101 sites in 14 countries (North America, Europe, Israel, and China). Individuals with symptomatic obstructive HCM with objective exertional intolerance (peak oxygen uptake [pVO2] ≤90% predicted) were included in the analysis. Data were analyzed from January to March 2024.
Interventions
Randomized 1:1 to aficamten (5-20 mg daily) or matching placebo for 24 weeks.
Main Outcomes and Measures
The primary outcome was change from baseline to week 24 in integrated exercise performance, defined as the 2-component z score of pVO2 and ventilatory efficiency throughout exercise (minute ventilation [VE]/carbon dioxide output [VCO2] slope). Response rates for achieving clinically meaningful thresholds for change in pVO2 and correlations with clinical measures of treatment effect (health status, echocardiographic/cardiac biomarkers) were also assessed.
Results
Among 282 randomized patients (mean [SD] age, 59.1 [12.9] years; 115 female [40.8%], 167 male [59.2%]), 263 (93.3%) had core laboratory–validated exercise testing at baseline and week 24. Integrated composite exercise performance improved in the aficamten group (mean [SD] z score, 0.17 [0.51]) from baseline to week 24, whereas the placebo group deteriorated (mean [SD] z score, −0.19 [0.45]), yielding a placebo-corrected improvement of 0.35 (95% CI, 0.25-0.46; P &amp;lt;.001). Further, aficamten treatment demonstrated significant improvements in total workload, circulatory power, exercise duration, heart rate reserve, peak heart rate, ventilatory efficiency, ventilatory power, and anaerobic threshold (all P &amp;lt;.001). In the aficamten group, large improvements (≥3.0 mL/kg per minute) in pVO2 were more common than large reductions (32% and 2%, respectively) compared with placebo (16% and 11%, respectively). Improvements in both components of the primary outcome, pVO2 and VE/VCO2 slope throughout exercise, were significantly correlated with improvements in symptom burden and hemodynamics (all P &amp;lt;.05).
Conclusions and Relevance
This prespecified analysis of the SEQUOIA-HCM randomized clinical trial found that aficamten treatment improved a broad range of exercise performance measures. These findings offer valuable insight into the therapeutic effects of aficamten.
Trial Registration
ClinicalTrials.gov Identifier: NCT0518681
Automatisches spektralphotometrisches Verfahren zur Europiumbestimmung mit Hilfe der Flüssig-flüssig-Extraktion in Gegenwart anderer Lanthanide, von Yttrium und Scandium
- …
