21 research outputs found

    Fracture toughness of the cancellous bone of FNF femoral heads in relation to its microarchitecture

    Get PDF
    This study considers the relationship between microarchitecture and mechanical properties for cancellous bone specimens collected from a cohort of patients who had suffered fractured necks of femur. OP is an acute skeletal condition with huge socioeconomic impact [1] and it is associated with changes in both bone quantity and quality [2], which affect greatly the strength and toughness of the tissue [3].Support was provided by the EPSRC (EP/K020196: Point-ofCare High Accuracy Fracture Risk Prediction), the UK Department of Transport under the BOSCOS (Bone Scanning for Occupant Safety) project, and approved by Gloucester and Cheltenham NHS Trust hospitals under ethical consent (BOSCOS – Mr. Curwen CI REC ref 01/179G)

    Developing focal construct technology for in vivo diagnosis of osteoporosis

    Get PDF
    Osteoporosis is a prevalent bone disease around the world, characterised by low bone mineral density and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density (BMD), using dual energy X-ray absorption (DEXA). However, the use of BMD to diagnose osteoporosis is not without limitation and arguably the risk of osteoporotic fracture should be determined collectively by bone mass, architecture and physicochemistry of the mineral composite building blocks. Rather than depending exclusively on the 'mass' of bone, our previous research investigated predicting the risk of fracture using 'bone quality'. The work highlighted that the material properties of OP tissue differ significantly to that of 'normal' bone and for the first time reported the clinical value of new biomarkers (obtained from X-ray scatter signatures) for fracture risk prediction. Thus, in order to improve fracture prediction models, diagnostic tools need to be developed which not only measure bone mineral density, but also bone quality. This pilot study builds on our previous work and aims to develop a new technology, Focal Construct Technology (FCT), which is hoped can measure XRD signatures in vivo. Our previous work was performed entirely with interrogating probes applied in transmission mode. This has some disadvantages that would be overcome were reflection mode employed. This study involves the creation of unique, high impact data with the potential to form the basis of a new generation of medical diagnostic instrumentation. A systematic series of conventional reflection mode ex vivo experiments were performed in which bone specimens were examined through increasing thicknesses of overlaying muscle/fat/skin. Further, we applied FCT to these geometries. This had not previously been attempted and required some initial modelling to ensure correct topologies of the hollow beams. The results from this study suggest it may be possible to obtain the parameters in vivo with the same precision as those obtained within the laboratory when using FCT

    Energy-dispersive X-ray diffraction using an annular beam

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing.We acknowledge gratefully the funding provided by the UK Engineering and Physical Sciences Research Council (EPSRC) grant number EP/K020196/1

    The South West Area Mesothelioma and Pemetrexed trial - A multi-centre prospective observational study evaluating novel markers of chemotherapy response and prognostication

    Get PDF
    Background:Robust markers that predict prognosis and detect early treatment response in malignant pleural mesothelioma (MPM) would enhance patient care.Methods:Consecutive patients with MPM who were considered fit for first-line chemotherapy were prospectively recruited. Patients of similar performance status opting for best supportive care were included as a comparator group. Baseline and interval CT, PET-CT and serum markers (mesothelin, fibulin-3 and neutrophil–lymphocyte ratio (NLR)) were obtained, and patients followed up for a minimum 12 months.Findings:Seventy-three patients were recruited (58 chemotherapy/15 comparator arm). Baseline TGV (total glycolytic volume on PET-CT) was an independent predictor of worse overall survival (OS) (P=0.001). Change in interval TGV(baseline/after two cycles of chemotherapy) did not predict OS or chemotherapy response on CT. Baseline NL

    The effect of chemotherapy on health-related quality of life in mesothelioma: Results from the SWAMP trial

    Get PDF
    © 2015 Cancer Research UK. All rights reserved. Background: The effect of chemotherapy on health-related quality of life (HRQoL) in malignant pleural mesothelioma (MPM) is poorly understood. Patient-individualised prognostication and prediction of treatment response from chemotherapy is useful but little evidence exists to guide practice. Method: Consecutive patients with MPM who were fit for first-line chemotherapy with pemetrexed and cisplatin\carboplatin were recruited and followed up for a minimum of 12 months. This study focussed on the HRQoL outcomes of these patients using the EQ-5D, EORTC QLQ-C30 and LC13. Results: Seventy-three patients were recruited of which 58 received chemotherapy and 15 opted for best supportive care (BSC). Compliance with HRQoL questionnaires was 98% at baseline. The chemotherapy group maintained HRQoL compared with the BSC group whose overall HRQoL fell (P=0.006) with worsening dyspnoea and pain. The impact of chemotherapy was irrespective of histological subtype although those with non-epithelioid disease had worse HRQoL at later time points (P=0.012). Additionally, those with a falling mesothelin or improvement on modified-RECIST CT at early follow-up had a better HRQoL at 16 weeks. Conclusions: HRQoL was maintained following chemotherapy compared with a self-selected BSC group. Once chemotherapy is initiated, a falling mesothelin or improved RECIST CT findings infer a quality-of-life advantage

    Towards new material biomarkers for fracture risk

    Get PDF
    Osteoporosis is a prevalent bone condition, characterised by low bone mass and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density (BMD) using dual energy X-ray absorption (DEXA). However, the risk of osteoporotic fracture is determined collectively by bone mass, architecture and physicochemistry of the mineral composite building blocks. Thus DEXA scans alone inevitably fail to fully discriminate individuals who will suffer a fragility fracture. This study examines trabecular bone at both ultrastructure and microarchitectural levels to provide a detailed material view of bone, and therefore provides a more comprehensive explanation of osteoporotic fracture risk. Physicochemical characterisation obtained through X-ray diffraction and infrared analysis indicated significant differences in apatite crystal chemistry and nanostructure between fracture and non-fracture groups. Further, this study, through considering the potential correlations between the chemical biomarkers and microarchitectural properties of trabecular bone, has investigated the relationship between bone mechanical properties (e.g. fragility) and physicochemical material features

    What is the effect of reporting all emergency department radiographs?

    No full text
    Objectives: To evaluate the effect of formal radiological reporting of all emergency department (ED) radiographs on clinical practice and patient outcome, and to consider whether a selective reporting policy might prove safe and effective. Methods: All radiographs taken in a single ED over a six month period were prospectively studied simultaneously in both the emergency and radiology departments to detect cases where a radiograph that was considered normal by ED staff was then reported as abnormal by the reporting radiologist. Whenever such a discrepancy occurred the patient's records were scrutinised to ascertain the source of the discrepancy, with a gold standard interpretation derived from senior clinical review and additional investigations where indicated. The clinical impact of the radiologist's formal report was then assessed. Accuracy of interpretation was considered in relation to the grade of ED staff and the radiographic examination obtained. Results: During the study period, 19 468 new patient attendances to the ED generated 11 749 radiographic examinations. Discrepancies were detected in 175 patients (1.5% of all radiographic examinations). Of these, 136 (1.2%) were subsequently shown to have been incorrectly interpreted in the ED (ED false negatives), with 40 patients (0.3%) undergoing a change in management as a result. In the remaining 39 the ED interpretation was judged to be correct (radiology false positives), with 16 patients undergoing further investigations or visits to the ED to confirm this. Conclusions: The formal reporting of ED radiographs by the radiology department detects a number of clinically important abnormalities that have been overlooked. However, this formal reporting also generates a number of incorrect interpretations that may lead to further unnecessary investigations. Some groups of ED radiographs (such as those interpreted by an ED consultant and films of the fingers and toes) may not require formal radiological reporting. The adoption of a selective reporting policy may reduce the reporting workload of the radiology department without compromising patient care

    The role of computerized tomography in the evaluation of gastrointestinal bleeding following negative or failed endoscopy: A review of current status

    No full text
    Gastrointestinal bleeding remains an important cause for emergency hospital admission with a significant related morbidity and mortality. Bleeding may relate to the upper or lower gastrointestinal tracts and clinical history and examination may guide investigations to the more likely source of bleeding. The now widespread availability of endoscopic equipment has made a huge impact on the rapid identification of the bleeding source. However, there remains a large group of patients with negative or failed endoscopy, in whom additional techniques are required to identify the source of bleeding. In the past, catheter angiography and radionuclide red cell labeling techniques were the preferred ′next step′ modalities used to aid in identifying a bleeding source within the gastrointestinal tract. However, these techniques are time-consuming and of limited sensitivity and specificity. In addition, catheter angiography is a relatively invasive procedure. In recent years, computerized tomography (CT) has undergone major technological advances in its speed, resolution, multiplanar techniques and angiographic abilities. It has allowed excellent visualization of the both the small and large bowel allowing precise anatomical visualization of many causes of gastrointestinal tract (GIT) bleeding. In addition, recent advances in multiphasic imaging now allow direct visualization of bleeding into the bowel. In many centers CT has therefore become the ′next step′ technique in identifying a bleeding source within the GIT following negative or failed endoscopy in the acute setting. In this review article, we review the current literature and discuss the current status of CT as a modality in investigating the patient with GIT bleeding
    corecore