53 research outputs found

    A Comparison of Two Methods to Articulate a Maxillary Cast with Lateral Cephalometry

    Get PDF
    The Kois Dento-Facial Analyzer, an arbitrary articulation system, is used by clinicians to articulate and evaluate clinical cases. There is, however, limited information for understanding how the Kois Dento-Facial Analyzer should be utilized. Dr. Kois and Dr. Lee originally patented the device in 2003 yet there is essentially no evidence-based research in the literature. The purpose of this study was to evaluate the outcomes of articulating the maxillary cast using the Kois Dento-Facial Analyzer in three-dimensions as compared to the position of the cast when using Panadent’s Pana-Mount Facebow. Fifteen dried human skulls were used as test subjects. Maxillary diagnostic impressions were made on each skull as well as lateral cephalometric radiographs. Each diagnostic cast was articulated on a Panadent articulator according to the manufacturer’s instructions by means of the Kois Dento-Facial Analyzer as well as the Pana-Mount facebow. Standardized photographs of each articulation were then taken from a lateral view. From the cephalometric radiograph, key landmarks and measurements were made including the distance from the condylar center to the incisal edge and the occlusal plane angle relative to Frankfort Horizontal Plane. From the photographs taken of each articulation, the distance from the articular centers to the incisal edge position was measured, as was the occlusal plane angle relative to Frankfort Horizontal Plane. Finally, the three-dimensional position of each articulation was located and compared by means of the Panadent CPI III device. Statistical analysis was completed for the data collected. From this study, the following conclusions were made: 1. The Kois Dento-Facial Analyzer articulates the maxillary cast in a position that is not statistically different to the Pana-Mount facebow when comparing the incisal edge position and occlusal plane angle relative to Frankfort Horizontal. 2. Both the Kois Dento-Facial Analyzer and the Pana-Mount facebow locate the maxillary incisal edge position in a significantly different position compared to the skull. 3. Both the Kois Dento-Facial Analyzer and the Pana-Mount facebow produce occlusal plane angles that are not significantly different than the angle on the skull. 4. The three dimensional location of the maxillary cast varies approximately 8- 10 mm at the condyles

    Comparison of The Kois Dento-Facial Analyzer System with an Earbow for Mounting a Maxillary Cast

    Get PDF
    Statement of problem: The Kois Dento-Facial Analyzer System (KDFA) is used by clinicians to mount maxillary casts and evaluate and treat patients. Limited information is available for understanding whether the KDFA should be considered as an alternative to an earbow. Purpose: The purpose of this study was to evaluate maxillary casts mounted using the KDFA with casts mounted using Panadent\u27s Pana-Mount Facebow (PMF). Both articulation methods were compared against a lateral cephalometric radiograph. Material and methods: Fifteen dried human skulls were used. Lateral cephalometric radiographs and 2 maxillary impressions were made of each skull. One cast from each skull was mounted on an articulator by means of the KDFA and the other by using the PMF. A standardized photograph of each articulation was made, and the distance from the articular center to the incisal edge position and the occlusal plane angle were measured. The distance from condylar center to the incisal edge and the occlusal plane angle were measured from cephalometric radiographs. Finally, the 3-dimensional position of each articulation was determined with a Panadent CPI-III. A randomized complete block design analysis of variance (RCBD) and post hoc tests (Tukey-Kramer HSD) (α=.05) were used to evaluate the occlusal plane angle and axis-central incisor distance. A paired 2-sample t test for means (α=.05) was used to compare the X, Y, and Z distance at the right and left condyle. Results: The KDFA and PMF mounted the maxillary cast in a position that was not statistically different from the skull when comparing the occlusal plane angle (P=.165). Both the KDFA and the PMF located the maxillary central incisor edge position in a significantly different position compared with the skull (P=.001) but were not significantly different from each other. The 3-dimensional location of the maxillary casts varied at the condyles by approximately 9 to 10.3 mm. Conclusion: The KDFA mounted the maxillary cast in a position that was not statistically different from the PMF when comparing the incisal edge position and the occlusal plane angle. Both the KDFA and the PMF located the maxillary incisal edge position in a significantly different position compared with the anatomic position on dried human skulls

    Synthetic Biology Open Language (SBOL) Version 1.1.0

    Get PDF
    In this BioBricks Foundation Request for Comments (BBF RFC), we specify the Synthetic Biology Open Language (SBOL) Version 1.1.0 to enable the electronic exchange of information describing DNA components used in synthetic biology. We define: 1. the vocabulary, a set of preferred terms and 2. the core data model, a common computational representation

    The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology

    No full text
    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.6 page(s

    Plant reproduction in the alpine landscape : reproductive ecology, genetic diversity and gene flow of the rare monocarpic "Campanula thyrsoides" in the Swiss Alps

    Get PDF
    Aims & Objectives The work presented in this thesis forms part of a larger project “How patchy habitat and isolation affect alpine plant life: genetic diversity, gene flow and mating systems”, which includes the PhD studies of Patrick Kuss and the author under the supervision of Professor Jürg Stöcklin. This doctoral thesis investigates the consequences of the natural fragmentation and patchiness of alpine landscapes on the life of alpine plant populations. The central focus of the thesis is on the mating system, the role of inbreeding and/or outbreeding depression, genetic diversity and geographic structure within and among populations of the rare Alpine monocarpic perennial Campanula thyrsoides. The main objectives and research questions addressed are: • Is Campanula thyrsoides self-compatible (SI) and if not, does the SI system break down with flower age? Do inbred C. thyrsoides offspring in the common garden suffer from inbreeding depression? • Do we find a distance related inbreeding depression (poorer reproducive output) or outbreeding depression (increased reproductive output) in field populations of C. thyrsoides following crosses of different crossing distances (selfing, 1m, 10m, 100m and among distant populations)? • How much genetic diversity exists within populations of C. thyrsoides and how does it relate to population size and altitude? Has the natural habitat fragmentation let to strong genetic differentiation and restricted gene flow among populations of C. thyrsoides resulting in a pronounced geographic structure? Study species In order to seek answers to our research questions, we choose to study a yellow bellflower; Campanula thyrsoides. The choice was based on the information that C. thyrsoides is a rare plant species, which is only found on calcarious soils within the European Alps and adjacent mountain ranges (Aeschimann et al. 2005). The plants selectiveness for carbonate bearing soils together with the fact that its seeds are not adapted to long-distance dispersal (Tackenberg 2003) are the main reasons for the isolation and small sizes of many of its populations. These population characteristics, therefore, made C. thyrsoides a suitable study species. Another important characteristic of C. thyrsoides, and one of the main reasons for its inclusion in the study is because it is a monocarpic perennial which flowers once and subsequently dies (Jäger 2000). Monocarpic plants species, which are more commonly found in subtropical and tropical mountain systems (e.g. the giant rosettes of Puya spp, Espeletia spp., Echium spp. etc., Smith & Young 1987; Young & Augspurger 1991) are rare amidst the temperate alpine flora (for the Alps, see Aeschimann et al. 2005). Monocarpy can promote genetic differentiation between populations by reducing the effective population size due to a shorter generation time and lower density of populations (Loveless & Hamrick 1984; Vitalis et al. 2004). When studying the effects of population isolation and habitat fragmentation on plant reproduction (e.g. mating system and inbreeding depression), it is, moreover, ideal to study a Campanula species. Although most Campanula species are selfincompatible and allogamous (Nyman 1993), both a break-down in the SI system with flower age (Vogler et al. 1998) and an evolution towards complete self-compatibility (Ægisdóttir & Thórhallsdóttir 2006) have been recorded. Design We studied the reproductive ecology and genetic diversity of Campanula thyrsoides by firstly setting up pollination experiments in the common garden and in the field and secondly by sampling leaf material in 32 field populations in Switzerland. In the common garden study, we set up a pollination experiment in order to study the breeding system of C. thyrsoides, including the consequences of selfing, half-sibling crossings and outcrossing on reproductive output and seedling performance. Moreover, field experiments in four populations were set up in the Swiss Alps in order to study the effect of different crossing distances on reproduction in C. thyrsoides and to see if evidence would be found of hidden inbreeding depression or outbreeding depression following large-distance crossings compared to within-population crossings. In addition, we studied the genetic diversity, gene flow and geographical structure within and among 32 field populations of C. thyrsoides in Switzerland, covering both large geographical and altitudinal ranges. The genetic study was conducted using 5 co-dominant microsatellite markers. In addition, we studied the genetic diversity in C. thyrsoides and two other alpine plants using random amplified polymorphic DNA (RAPD) marker as well as studing the evolutionary demography of C. thyrsoides
    corecore