40 research outputs found

    Pump-tailored Alternative Bell State Generation in the First-Order Hermite-Gaussian basis

    Full text link
    We demonstrate entangled-state swapping, within the Hermite-Gaussian basis of first-order modes, directly from the process of spontaneous parametric down-conversion within a nonlinear crystal. The method works by explicitly tailoring the spatial structure of the pump photon such that it resembles the product of the desired entangled spatial modes exiting the crystal. Importantly, the result is an entangled state of balanced HG modes, which may be beneficial in applications that depend on symmetric accumulations of geometric phase through optics or in applications of quantum sensing and imaging with azimuthal sensitivity. Furthermore, the methods are readily adaptable to other spatial mode bases

    The role of karyopherins in the regulated sumoylation of septins

    Get PDF
    In the yeast Saccharomyces cerevisiae, several components of the septin ring are sumoylated during anaphase and then abruptly desumoylated at cytokinesis. We show that septin sumoylation is controlled by the interactions of two enzymes of the sumoylation pathway, Siz1p and Ulp1p, with the nuclear transport machinery. The E3 ligase Siz1p is imported into the nucleus by the karyopherin Kap95p during interphase. In M phase, Siz1p is exported from the nucleus by the karyopherin Kap142p/Msn5p and subsequently targeted to the septin ring, where it participates in septin sumoylation. We also show that the accumulation of sumoylated septins during mitosis is dependent on the interactions of the SUMO isopeptidase Ulp1p with Kap121p and Kap95p–Kap60p and the nuclear pore complex (NPC). In addition to sequestering Ulp1 at the NPC, Kap121p is required for targeting Ulp1p to the septin ring during mitosis. We present a model in which Ulp1p is maintained at the NPC during interphase and transiently interacts with the septin ring during mitosis

    A physicochemical roadmap of yeast replicative aging

    Get PDF
    Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding, are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show the macromolecular crowding changes less in longer-lived cells in contrast to shorter-lived cells. While the average pH and crowding levels change only modestly with aging, we observe drastic changes in organellar volume, leading to crowding on the µm scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively-aged yeast cells

    A physicochemical perspective of aging from single-cell analysis of pH, macromolecular and organellar crowding in yeast

    Get PDF
    Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells we observe drastic changes in organellar volume, leading to crowding on the µm scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells

    On Secure Workflow Decentralisation on the Internet

    Get PDF
    Decentralised workflow management systems are a new research area, where most work to-date has focused on the system's overall architecture. As little attention has been given to the security aspects in such systems, we follow a security driven approach, and consider, from the perspective of available security building blocks, how security can be implemented and what new opportunities are presented when empowering the decentralised environment with modern distributed security protocols. Our research is motivated by a more general question of how to combine the positive enablers that email exchange enjoys, with the general benefits of workflow systems, and more specifically with the benefits that can be introduced in a decentralised environment. This aims to equip email users with a set of tools to manage the semantics of a message exchange, contents, participants and their roles in the exchange in an environment that provides inherent assurances of security and privacy. This work is based on a survey of contemporary distributed security protocols, and considers how these protocols could be used in implementing a distributed workflow management system with decentralised control . We review a set of these protocols, focusing on the required message sequences in reviewing the protocols, and discuss how these security protocols provide the foundations for implementing core control-flow, data, and resource patterns in a distributed workflow environment

    Ultra-High Resolution 3D Imaging of Whole Cells.

    Get PDF
    Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes

    Reducing Alaska Native paediatric oral health disparities: a systematic review of oral health interventions and a case study on multilevel strategies to reduce sugar-sweetened beverage intake

    Get PDF
    Background. Tooth decay is the most common paediatric disease and there is a serious paediatric tooth decay epidemic in Alaska Native communities. When untreated, tooth decay can lead to pain, infection, systemic health problems, hospitalisations and in rare cases death, as well as school absenteeism, poor grades and low quality-of-life. The extent to which population-based oral health interventions have been conducted in Alaska Native paediatric populations is unknown. Objective. To conduct a systematic review of oral health interventions aimed at Alaska Native children below age 18 and to present a case study and conceptual model on multilevel intervention strategies aimed at reducing sugar-sweetened beverage (SSB) intake among Alaska Native children. Design. Based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement, the terms “Alaska Native”, “children” and “oral health” were used to search Medline, Embase, Web of Science, GoogleScholar and health foundation websites (1970–2012) for relevant clinical trials and evaluation studies. Results. Eighty-five studies were found in Medline, Embase and Web of Science databases and there were 663 hits in GoogleScholar. A total of 9 publications were included in the qualitative review. These publications describe 3 interventions that focused on: reducing paediatric tooth decay by educating families and communities; providing dental chemotherapeutics to pregnant women; and training mid-level dental care providers. While these approaches have the potential to improve the oral health of Alaska Native children, there are unique challenges regarding intervention acceptability, reach and sustainability. A case study and conceptual model are presented on multilevel strategies to reduce SSB intake among Alaska Native children. Conclusions. Few oral health interventions have been tested within Alaska Native communities. Community-centred multilevel interventions are promising approaches to improve the oral and systemic health of Alaska Native children. Future investigators should evaluate the feasibility of implementing multilevel interventions and policies within Alaska Native communities as a way to reduce children's health disparities

    Global variability in leaf respiration in relation to climate, plant functional types and leaf traits

    Get PDF
    • Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. • Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark. • Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8–28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants. • The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs)
    corecore