12 research outputs found

    Micromorphological structure of maritime antarctic cryosols (King-George and Livingston Islands, West Antarctica)

    Get PDF
    Cryosols of the Antarctic maritime area are much different from the continental ones. The relatively moderate climate conditions in Maritime Antarctica and a strong interaction between the biotic and abiotic environment are drivers for more intensive soil formation processes than in the continental regions. Soil formation studies from the Maritime Antarctica are, however, rather rare. Therefore, micromorphological investigations on polar soils can contribute to more comprehensive information on soil genesis in Antarctica. In this study, we applied the micromorphological study of thin sections from soil micromonoliths to assess the intensity and trends of the pedogenic processes in selected soils from two adjacent islands of the South-Shetland archipelago: King George Island and Livingston Island. The results obtained show that regional lithology and the origin of the incoming organic matter mainly determine the micromorphological structure of the local soils. Soil matrix micromorphological properties and features (mineralogical content, weathering stage and even partly grain-size distribution) are mainly defined by pyroclastic particles due to recent and ancient volcanic eruptions. The presence of rounded grains and aggregated mineral particles is the evidence of marine origin of the sediments. Ornithogenic soils show the clear evidence of the organic plasma formation and mineral particles aggregation via the zoogenic organic substances provided by penguins which is a unique specifics of the maritime Antarctic soils

    Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks

    Get PDF
    Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate

    Soil Organic Matter of Tidal Marsh Permafrost-Affected Soils of Kolyma Lowland

    No full text
    Soils of the Arctic sea coasts are one of the least studied due to the complex logistical accessibility of the region, as well as the severe climatic conditions. The genesis of these soils is determined by several factors of soil formation simultaneously—cryogenesis, the influence of river alluvial processes, as well as the tidal influence of the sea. The paper presents data on the morphological structure of soils formed on the seacoast of the East-Siberian Sea (Kolyma Lowland, North Yakutia). Under the influence of cryogenesis and sea water tidal input, marsh soils are formed, with a relatively high level of salinity and the development of gleyization. Autochthonous and allochthonous soil organic matter play a leading role in marsh soil formation here, including the possible accumulation and biochemical transformation of incoming pollutants (e.g., hydrocarbons). The main objective of the study was to evaluate the soil organic matter genesis and alteration under the influence of tidal processes in coastal permafrost-affected soils as well as to obtain the previously unknown characteristics of the structural and elemental composition of different fractions of organic matter. The elemental composition and 13C NMR spectroscopy of humic acids were analyzed. It was revealed that humic acids extracted from the studied marsh soils accumulate up to 50% C and 4% N. Active processes of dehydrogenation are noted in HAs molecules, which indicates a relatively low degree of aliphatic structure development. According to 13C NMR spectroscopy, it was revealed that up to 45% of aromatic structural fragments accumulate in marsh soils, indicating a relatively high degree of organic matter stabilization and resistance to biodegradation

    Two decades of active layer thickness monitoring in northeastern Asia

    No full text
    This study summarizes seasonal thawing data collected in different permafrost regions of northeast Asia over the 1995–2018 period. Empirical observations were undertaken under the Circumpolar Active Layer Monitoring (CALM) program at a range of sites across the permafrost landscapes of the Yana-Indigirka and Kolyma lowlands and the Chukotka Peninsula, and supplemented with 10 years of observations from volcanic mountainous areas of the Kamchatka Peninsula. Thaw depth observations, taken using mechanical probing at the end of the thawing season, and ground temperature measurements, were analyzed with respect to air temperatures trends. The data from 24 sites (16 in the Indigirka-Kolyma region, 5 in Chukotka and 3 in Kamchatka) reveal different reactions of the active layer thickness (ALT) to recent changes in atmospheric climate. In general, there is a positive relation between ALT and summer air temperatures. Since the early 2000s positive ALT anomalies (compared with mean data from all sites) prevail in the Kolyma and Chukotka area, with only one alas site showing a negative ALT trend. The only active site in the Kamchatka Mountains shows no significant thaw depth changes over the period of observation. Two other Kamchatka sites were affected during a volcanic eruption in 2012

    Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks

    Get PDF
    Large stocks of soil organic carbon (SOC) have accumulated in the northern hemisphere permafrost region, but their current mounts and future fate remain uncertain. By analyzing an unprecedented dataset combining >2,700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated 1014−175+194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide the first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate

    Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks

    No full text
    Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining \u3e2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate

    The Permafrost Young Researchers Network (PYRN) is getting older: The past, present, and future of our evolving community

    Get PDF
    International audienceA lasting legacy of the International Polar Year (IPY) 2007–2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN’s development since 2005 and the IPY’s role, (2) the first 2015 PYRN census and survey results, and (3) PYRN’s future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN’s successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY
    corecore