719 research outputs found

    Effectiveness of three interventions for secondary prevention of low back pain in the occupational health setting - a randomised controlled trial with a natural course control

    Get PDF
    Background: We assessed the effectiveness of three interventions that were aimed to reduce non-acute low back pain (LBP) related symptoms in the occupational health setting. Methods: Based on a survey (n = 2480; response rate 71%) on LBP, we selected a cohort of 193 employees who reported moderate LBP (Visual Analogue Scale VAS > 34 mm) and fulfilled at least one of the following criteria during the past 12 months: sciatica, recurrence of LBP >= 2 times, LBP >= 2 weeks, or previous sickness absence. A random sample was extracted from the cohort as a control group (Control, n = 50), representing the natural course of LBP. The remaining 143 employees were invited to participate in a randomised controlled trial (RCT) of three 1:1:1 allocated parallel intervention arms: multidisciplinary rehabilitation (Rehab, n = 43); progressive exercises (Physio, n = 43) and self-care advice (Advice, n = 40). Seventeen employees declined participation in the intervention. The primary outcome measures were physical impairment (PHI), LBP intensity (Visual Analogue Scale), health related quality of life (QoL), and accumulated sickness absence days. We imputed missing values with multiple imputation procedure. We assessed all comparisons between the intervention groups and the Control group by analysing questionnaire outcomes at 2 years with ANOVA and sickness absence at 4 years by using negative binomial model with a logarithmic link function. Results: Mean differences between the Rehab and Control groups were - 3 [95% CI -5 to - 1] for PHI, - 13 [- 24 to - 1] for pain intensity, and 0.06 [0.00 to 0.12] for QoL. Mean differences between the Physio and Control groups were - 3 [95% CI -5 to - 1] for PHI, -13 [- 29 to 2] for pain intensity, and 0.07 [0.01 to 0.13] for QoL. The main effects sizes were from 0.4 to 0.6. The interventions were not effective in reducing sickness absence. Conclusions: Rehab and Physio interventions improved health related quality of life, decreased low back pain and physical impairment in non-acute, moderate LBP, but we found no differences between the Advice and Control group results. No effectiveness on sickness absence was observed.Peer reviewe

    Refinements of the Littlewood-Richardson rule

    Get PDF
    We refine the classical Littlewood-Richardson rule in several different settings. We begin with a combinatorial rule for the product of a Demazure atom and a Schur function. Building on this, we also describe the product of a quasisymmetric Schur function and a Schur function as a positive sum of quasisymmetric Schur functions. Finally, we provide a combinatorial formula for the product of a Demazure character and a Schur function as a positive sum of Demazure characters. This last rule implies the classical Littlewood-Richardson rule for the multiplication of two Schur functions

    Eating Disorders: An Evolutionary Psychoneuroimmunological Approach

    Get PDF
    Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders

    High potential for loss of permafrost landforms in a changing climate

    Get PDF
    The presence of ground ice in Arctic soils exerts a major effect on permafrost hydrology and ecology, and factors prominently into geomorphic landform development. As most ground ice has accumulated in near-surface permafrost, it is sensitive to variations in atmospheric conditions. Typical and regionally widespread permafrost landforms such as pingos, ice-wedge polygons, and rock glaciers are closely tied to ground ice. However, under ongoing climate change, suitable environmental spaces for preserving landforms associated with ice-rich permafrost may be rapidly disappearing. We deploy a statistical ensemble approach to model, for the first time, the current and potential future environmental conditions of three typical permafrost landforms, pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere. We show that by midcentury, the landforms are projected to lose more than one-fifth of their suitable environments under a moderate climate scenario (RCP4.5) and on average around one-third under a very high baseline emission scenario (RCP8.5), even when projected new suitable areas for occurrence are considered. By 2061-2080, on average more than 50% of the recent suitable conditions can be lost (RCP8.5). In the case of pingos and ice-wedge polygons, geographical changes are mainly attributed to alterations in thawing-season precipitation and air temperatures. Rock glaciers show air temperature-induced regional changes in suitable conditions strongly constrained by topography and soil properties. The predicted losses could have important implications for Arctic hydrology, geo- and biodiversity, and to the global climate system through changes in biogeochemical cycles governed by the geomorphology of permafrost landscapes. Moreover, our projections provide insights into the circumpolar distribution of various ground ice types and help inventory permafrost landforms in unmapped regions.Peer reviewe

    Quasisymmetric Schur functions

    Full text link
    We introduce a new basis for quasisymmetric functions, which arise from a specialization of nonsymmetric Macdonald polynomials to standard bases, also known as Demazure atoms. Our new basis is called the basis of quasisymmetric Schur functions, since the basis elements refine Schur functions in a natural way. We derive expansions for quasisymmetric Schur functions in terms of monomial and fundamental quasisymmetric functions, which give rise to quasisymmetric refinements of Kostka numbers and standard (reverse) tableaux. From here we derive a Pieri rule for quasisymmetric Schur functions that naturally refines the Pieri rule for Schur functions. After surveying combinatorial formulas for Macdonald polynomials, including an expansion of Macdonald polynomials into fundamental quasisymmetric functions, we show how some of our results can be extended to include the tt parameter from Hall-Littlewood theory.Comment: 30 pages; references added; new subsections on transition matrices, how to include the tt parameter from Hall-Littlewood theory and further avenues; new survey of combinatorial formulas for Macdonald polynomials, including an expansion of Macdonald polynomials into fundamental quasisymmetric function

    Terveyttä edistävään ruokavalioon yhteydessä olevat tekijät korkeakouluopiskelijoilla

    Get PDF

    In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

    Get PDF
    Background In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. Results We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then searched for MAGs harbouring genes involved in denitrification, an important process driving N2O emissions. Communities of potential denitrifiers were dominated by microorganisms with truncated denitrification pathways (i.e., lacking one or more denitrification genes) and differed across soil ecosystems. Upland soils showed a strong N2O sink potential and were dominated by members of the Alphaproteobacteria such as Bradyrhizobium and Reyranella. Fens, which had in general net-zero N2O fluxes, had a high abundance of poorly characterized taxa affiliated with the Chloroflexota lineage Ellin6529 and the Acidobacteriota subdivision Gp23. Conclusions By coupling an in-depth characterization of microbial communities with in situ measurements of N2O fluxes, our results suggest that the observed spatial patterns of N2O fluxes in the tundra are related to differences in the composition of denitrifier communities.Peer reviewe

    Incorporating dominant species as proxies for biotic interactions strengthens plant community models

    Get PDF
    1. Biotic interactions exert considerable influence on the distribution of individual species and should, thus, strongly impact communities. Implementing biotic interactions in spatial models of community assembly is therefore essential for accurately modelling assemblage properties. However, this remains a challenge due to the difficulty of detecting the role of species interactions and because accurate paired community and environment data sets are required to disentangle biotic influences from abiotic effects. 2. Here, we incorporate data from three dominant species into community-level models as a proxy for the frequency and intensity of their interactions with other species and predict emergent assemblage properties for the co-occurring subdominant species. By analysing plant community and fieldquantified environmental data from specially designed and spatially replicated monitoring grids, we provide a robust in vivo test of community models. 3. Considering this well-defined and easily quantified surrogate for biotic interactions consistently improved realism in all aspects of community models (community composition, species richness and functional structure), irrespective of modelling methodology. 4. Dominant species reduced community richness locally and favoured species with similar leaf dry matter content. This effect was most pronounced under conditions of high plant biomass and cover, where stronger competitive impacts are expected. Analysis of leaf dry matter content suggests that this effect may occur through efficient resource sequestration. 5. Synthesis. We demonstrate the strong role of dominant species in shaping multiple plant community attributes, and thus the need to explicitly include interspecific interactions to achieve robust predictions of assemblage properties. Incorporating information on biotic interactions strengthens our capacity not only to predict the richness and composition of communities, but also how their structure and function will be modified in the face of global change.Academy of Finland (Project Number 1140873) and The Danish Council for Independent Research grant number 12-126430http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2745hb201

    Isometric force production parameters during normal and experimental low back pain conditions

    Get PDF
    BACKGROUND: The control of force and its between-trial variability are often taken as critical determinants of motor performance. Subjects performed isometric trunk flexion and extension forces without and with experiment pain to examine if pain yields changes in the control of trunk forces. The objective of this study is to determine if experimental low back pain modifies trunk isometric force production. METHODS: Ten control subjects participated in this study. They were required to exert 50 and 75% of their isometric maximal trunk flexion and extension torque. In a learning phase preceding the non painful and painful trials, visual and verbal feedbacks were provided. Then, subjects were asked to perform 10 trials without any feedback. Time to peak torque, time to peak torque variability, peak torque variability as well as constant and absolute error in peak torque were calculated. Time to peak and peak dF/dt were computed to determine if the first peak of dF/dt could predict the peak torque achieved. RESULTS: Absolute and constant errors were higher in the presence of a painful electrical stimulation. Furthermore, peak torque variability for the higher level of force was increased with in the presence of experimental pain. The linear regressions between peak dF/dt, time to peak dF/dt and peak torque were similar for both conditions. Experimental low back pain yielded increased absolute and constant errors as well as a greater peak torque variability for the higher levels of force. The control strategy, however, remained the same between the non painful and painful condition. Cutaneous pain affects some isometric force production parameters but modifications of motor control strategies are not implemented spontaneously. CONCLUSIONS: It is hypothesized that adaptation of motor strategies to low back pain is implemented gradually over time. This would enable LBP patients to perform their daily tasks with presumably less pain and more accuracy
    • …
    corecore