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Abstract
The presence of ground ice in Arctic soils exerts a major effect on permafrost hydrology and
ecology, and factors prominently into geomorphic landform development. As most ground ice has
accumulated in near-surface permafrost, it is sensitive to variations in atmospheric conditions.
Typical and regionally widespread permafrost landforms such as pingos, ice-wedge polygons, and
rock glaciers are closely tied to ground ice. However, under ongoing climate change, suitable
environmental spaces for preserving landforms associated with ice-rich permafrost may be rapidly
disappearing. We deploy a statistical ensemble approach to model, for the first time, the current
and potential future environmental conditions of three typical permafrost landforms, pingos,
ice-wedge polygons and rock glaciers across the Northern Hemisphere. We show that by
midcentury, the landforms are projected to lose more than one-fifth of their suitable environments
under a moderate climate scenario (RCP4.5) and on average around one-third under a very high
baseline emission scenario (RCP8.5), even when projected new suitable areas for occurrence are
considered. By 2061–2080, on average more than 50% of the recent suitable conditions can be lost
(RCP8.5). In the case of pingos and ice-wedge polygons, geographical changes are mainly
attributed to alterations in thawing-season precipitation and air temperatures. Rock glaciers show
air temperature-induced regional changes in suitable conditions strongly constrained by
topography and soil properties. The predicted losses could have important implications for Arctic
hydrology, geo- and biodiversity, and to the global climate system through changes in
biogeochemical cycles governed by the geomorphology of permafrost landscapes. Moreover, our
projections provide insights into the circumpolar distribution of various ground ice types and help
inventory permafrost landforms in unmapped regions.

1. Introduction

The presence of ground ice in the surface layers of
permafrost is central to the geomorphic and hydro-
ecological functioning of high-latitude and altitude
permafrost landscapes (Rowland et al 2010, Kokelj
et al 2014, Liljedahl et al 2016). Involved geomorphic
processes give rise to permafrost landforms, such as

ice-cored pingo mounds (Mackay 1988), ice wedges
that form distinctive polygonal patterned ground
(Washburn 1980), and slowly creeping rock gla-
ciers inmountains (Barsch 1996). Ice-rich permafrost
landforms are responsive to climatic perturbations as
indicated by the intensified permafrost degradation
during the past decades (Liljedahl et al 2016, Far-
quharson et al 2019). Relict permafrost landforms
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found in temperate climates (e.g. pingo remnants
and ice-wedge casts in western and central Europe
(Vandenberghe and Pissart 1993) imply that distri-
butions of permafrost landforms have changed before
and are likely to change in future climates (Washburn
1980, Grosse and Jones 2011, Liljedahl et al 2016).

Projected increases in air temperatures and
precipitation with Arctic amplification (Hoegh-
Guldberg et al 2018) are anticipated to intensify per-
mafrost warming (Biskaborn et al 2019) and asso-
ciated thermokarst processes, i.e. thawing and set-
tling of ice-rich permafrost (Jorgenson et al 2006,
Grosse et al 2016, Douglas et al 2020). Landscapes
with current thermokarst features or susceptibility
to future thermokarst are estimated to cover up to
20% of circumpolar permafrost regions (Olefeldt
et al 2016). Rising air and ground temperatures pose
a potential constraint for pingo persistence across
northern Siberia (Grosse and Jones 2011), Alaska
(Jones et al 2012), and Canada (Mackay 1988), for
example. Degradation of ice-wedge polygons has
been observed across the Arctic, including continu-
ous permafrost regions (Jorgenson et al 2006, 2015,
Grosse et al 2016, Liljedahl et al 2016, Steedman
et al 2017, Fraser et al 2018, Farquharson et al 2019).
Moreover, downslope creeping of rock glaciers due
to ground ice deformation has shown increased sur-
face velocities related to increased air temperatures in
some regions (Kääb et al 2007, Jones et al 2019). The
degradation of ground ice in permafrost landforms
can induce thermokarst or mass-movement hazards
(Kääb et al 2007) and thereby threaten infrastructure
development (Rowland et al 2010, Kanevskiy et al
2017, Hjort et al 2018, Streletskiy et al 2019).

Permafrost landforms bear local-scale geo-
morphic (Humlum 2000, Knight et al 2019, Ward
Jones et al 2019), hydrological (Liljedahl et al 2016,
Brighenti et al 2019, Nitzbon et al 2019) and bio-
logical (Lara et al 2018) significance, but also affect
global systems through alterations in atmospheric
(Schuur et al 2015) and aquatic (Serikova et al 2018)
greenhouse gas fluxes from permafrost regions. These
landforms also contribute to local biodiversity (Jor-
genson et al 2006) by serving as highly specialized
ecosystems for flora (Jorgenson et al 2015) and fauna
(Fountain et al 2012). In some regions they also
provide a freshwater supply for human use (Jones
et al 2018).

At present, the information on current and poten-
tial future distributions of permafrost landforms at
the circumpolar scale is sparse. This is despite an
increasing amount of circumpolar to global perma-
frost extent simulations conducted bothwith process-
based (e.g. Guo and Wang 2016) and empirical/stat-
istical approaches (Chadburn et al 2017, Aalto et al
2018, Obu et al 2019). The lack of spatially detailed
knowledge on geomorphic features poses a limita-
tion to the assessments of climate change impacts
on permafrost environments. We aim to reduce these

knowledge gaps by applying statistical distribution
modelling. Statistical modelling methods have been
used in geomorphological contexts (Luoto et al 2010,
Aalto et al 2014, Rudy et al 2017, Fewster et al 2020).
In our previous work (Aalto et al 2018), we have
demonstrated that a statistical approach produces
similar permafrost extents with process-based mod-
els (e.g. Guo and Wang 2016) and other empirical
models (Chadburn et al 2017, Obu et al 2019), and
have relatively small prediction errors. The advant-
age of the approach over physically based models
which require extensive parameterization of physical
soil properties, for example, is that statistical mod-
elling allows for predicting landform occurrence at
high spatial resolution across the circumpolar region
using readily available geospatial data on climate, soil
and topography. Thus, our approach does not con-
sider various processes affecting heat fluxes or ground
ice accumulation in permafrost but is suitable for
examining how different environmental factors affect
the distribution of permafrost landforms across the
circumpolar region.

Our objective is to model, for the first time,
the potential environmental spaces for the occur-
rence of pingos, ice-wedge polygons and rock gla-
ciers across the Northern Hemisphere. These spaces
encompass conditionswhere climate, topography and
soil properties are suitable for landform presence.
In the modelling we assumed the landforms to be
in equilibrium with climate conditions for the con-
sidered period, that is, we did not make assump-
tions concerning whether the landforms are degrad-
ing or still growing. Based on the statistical model-
ling results, we present the circumpolar coverages of
potential environmental spaces for the studied land-
forms during a recent period (1950–2000) andpredict
their regional changes for two future periods (2041–
2060 and 2061–2080) using representative concen-
tration pathway RCP4.5 (stabilization scenario) and
RCP8.5 (rising radiative forcing pathway) climate-
change scenarios. Moreover, the results offer insights
into the fine-scale distribution of various ground ice
types and help inventory permafrost landforms in
unmapped regions.

2. Materials andmethods

2.1. Permafrost landform observations
Observations of pingos, ice-wedge polygons
and rock glaciers across the Northern Hemi-
sphere (i.e. presence data, figure 1(a)) made since
late 20th century were compiled from available
inventories, published studies and geomorpho-
logical maps (see section S1 (available online at
stacks.iop.org/ERL/15/104065/mmedia) in supple-
mentary material). Ice-cored pingo mounds (figure
1(b)) form in permafrost environments by injec-
tion and freezing of pressurized water in the soil,
and results in massive-ice formation and upheaving
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of overlying surface material (Mackay 1988). Two
primary pingo types are often distinguished: hydro-
static, predominantly occurring in low-lying con-
tinuous permafrost regions, and hydraulic, which
are more typical to discontinuous permafrost and
depend on water moving under a hydraulic gradi-
ent (Mackay 1988, Grosse and Jones 2011, Jones et al
2012). Distinct patterned ground features, ice-wedge
polygons (figure 1(c)), occur nearly ubiquitously in
unconsolidated deposits across the Northern Hemi-
sphere permafrost domain and wedge ice is the most
common form of ground ice in continuous perma-
frost (Bernard-Grand’Maison and Pollard 2018). The
polygon shape results from the cyclical growth of ice
wedges in thermal contraction cracks formed in sus-
ceptible soils during cold spells in wintertime (Wash-
burn 1980, Kokelj et al 2014).

Rock glaciers are bodies of poorly sorted debris
and ice that move due to deformation of internal
ice (Barsch 1996, Berthling 2011, figure 1(d)) in per-
mafrost environments. They occupy most moun-
tain regions in both continental and maritime cli-
mates including high-Arctic conditions (Evans 1993)
and high elevations in warmer climates in, e.g. the
Middle East (Gorbunov 2013). We included both
active (flowing or creeping downward) and inact-
ive (stagnant) rock glaciers that contain ice (Barsch
1996) regardless of whether theywere primarily influ-
enced by talus slope dynamics or by glacier dynam-
ics (moraine-derived rock glaciers) (see section S1,
supplementary material) but excluded relict land-
forms. In addition to presence data, the applied mod-
elling required information on environments where
the landforms are not present. Thus, we compiled
datasets with 1349 absence grid cells for pingos, 494
for ice-wedge polygons and 1549 for rock glaciers
(section S1, supplementary material).

2.2. Environmental data
In general, the formation of ground ice and associated
landforms require permafrost conditions with effi-
cient wintertime freezing and reasonably cool sum-
mers (Washburn 1980, Mackay 1988). Moreover,
rainfall, topography, and properties of snow, veget-
ation and soil layers affect ground ice accumulation
and preservation potential in the landforms (Barsch
1996, Boeckli et al 2012, Bernard-Grand’Maison and
Pollard 2018, Knight et al 2019, Douglas et al 2020).
We used geospatial data on physically relevant factors
(climate, soil and topography predictors) at 30 arc-
second (~1 km) spatial resolution to examine their
effects on landform occurrence.

To account for the assumed seasonal effects of
climate we computed freezing and thawing degree-
days (FDD and TDD, ◦C-days) and amounts of solid
(Snowfall, mm) and liquid (Rainfall, mm) precipita-
tion. Snowfall was defined as the sum of precipitation

for months with average air temperature below 0 ◦C,
and rainfall for those above 0 ◦C. The variables
were computed separately for each considered time
period and climate scenario using interpolated cli-
mate surfaces from the WorldClim database (Hij-
mans et al 2005). The database includes monthly
air temperature averages and precipitation sums for
the baseline period 1950–2000 (note that the major-
ity of the permafrost landform observations were
from this period) and for two future periods (2041–
2060 and 2061–2080), for which we used RCP4.5
and RCP8.5 radiative forcing scenarios (van Vuuren
et al 2011). Future climate projections included in
the WorldClim database (Hijmans et al 2005) derive
from an ensemble of 18 global climate models in
the Coupled Model Intercomparison Project phase 5
archive (Taylor et al 2012).

The GMTED2010 digital elevation model
(Danielson and Gesch 2011) at 30 arc-second spa-
tial resolution (~1 km) was employed to compute
the topography predictors, which were used to rep-
resent the amount of incoming solar energy, and the
transport of ground material and moisture across the
landscape. Potential incident solar radiation (Mccune
and Keon 2002) (PISR, MJ cm−2 a−1) was computed
using slope, aspect and latitude, of which slope angle
(Slope, ◦) was used also as an independent predictor
in the modelling. PISR was omitted from pingo and
ice-wedge polygon modelling, because in flat areas
it is argued to reflect the latitudinal gradient rather
than local topography-mediated insolation condi-
tions (Karjalainen et al 2019). Topographic wetness
index (TWI) was computed in SAGA GIS (System
for Automated Geoscientific Analyses, Conrad et al
2015) with the SAGA Wetness Index tool (Böhner
and Selige 2006), all the other predictors in ArcGIS
10.5.

Averaged proportions of coarse sediments
(Coarse, grain size > 2mm) and fine sediments (Fine,
[sum of clay and silt] < 50 µm) as well as the con-
tent of soil organic carbon (SOC, g kg−1) within
2 m from the surface were derived from the Soil-
Grids database (Hengl et al 2017). These factors were
assumed to characterize the varying hydro-thermal
conditions of permafrost soils. Finally, we determ-
ined water coverage (%) in the 30 arc-second grid
cells using a 150 m resolution dataset on water bod-
ies (Defourny 2016) to account for the proportion
of thawed ground (lakes and taliks) in each grid cell.
There also exist site-specific factors that we could not
directly consider with geospatial data at a circum-
polar extent. Pingo and ice-wedge polygon forma-
tion depends on groundwater flow, and the thickness
and water flow permeability soil deposits (Jones et al
2012), while debris availability, lithology and melt-
water dynamics are central for rock glaciers (Lilleøren
and Etzelmüller 2011, Knight et al 2019).
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Figure 1. Compiled occurrences of pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere permafrost
domain. Symbols indicate pingo (N = 9709), ice-wedge polygon (N = 861) and rock glacier (N = 4035) presence in a 30
arc-second grid cell (a). The shaded area depicts the circumpolar permafrost region (Brown et al 2002). Field photos showing a
pingo near Umiat, Alaska (b), ice-wedge polygons on the Colville River delta, Alaska (c) and a rock glacier reaching valley bottom
near Kluane Lake in Yukon, Canada (d). Photo credits: Benjamin M. Jones (b), (c) and Bernd Etzelmüller (d).

2.3. Statistical modelling
We modelled the suitable environmental spaces for
landform occurrence and factors affecting their dis-
tribution by relating the compiled observations of
landform presence and absence to environmental
conditions using multivariate statistical methods. We
used four methods and model-averaging techniques
(Aalto et al 2017) to reduce the prediction uncer-
tainty related to the choice of a single modelling
method (Thuiller et al 2009).Generalized linearmod-
elling (GLM), generalized additivemodelling (GAM),
generalized boosting modelling (GBM) and random
forest (RF), were implemented within BIOMOD2
environment (Thuiller et al 2009) in R (version 3.5.2,
see model calibration details in section 2, supple-
mentary material). Model evaluation was performed
using 100-fold cross validation that at each run used
a random sample of 70% of observations in the data-
sets to calibrate a model and to validate it with the
remaining 30%.Model performance was evaluated at
each round with the adjusted coefficient of determ-
ination (R2) and two prevalence-independent statist-
ical measures of classification accuracy; area under

the receiving operating characteristic curve (AUC)
and true skill statistic (TSS, Allouche et al 2006).
Ensemble predictions were then formed by using the
committee-averaging algorithm (Thuiller et al 2009,
section 2, supplementary material). We evaluated
the spatial reliability of the predictions by mapping
the modelling agreement between the four methods
(Luoto et al 2010).

To examine the environmental controls and sens-
itivities of permafrost landforms we estimated a
modelling technique-independent variable import-
ance score for each predictor (Thuiller et al 2009), and
created response curves with each of the four meth-
ods to examine the shapes of relationships between
each landform and predictors (Elith et al 2005) using
response.plot2 function in BIOMOD2 environment
(Thuiller et al 2009).

Projections for 2041–2060 and 2061–2080 were
performed by substituting the climate parameters in
the calibrated models with respective climate change
scenario-based predictors (Hijmans et al 2005).Other
predictors were not modified (Aalto et al 2017, 2018)
but used as they were in the baseline modelling
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in order to constrain suitable topography, surficial
deposits and drainage conditions for landform occur-
rence in changing climatic conditions. These factors
were considered to remain relatively unchanged
within the study period, while vegetation properties
that affect permafrost-climate responses (Shur and
Jorgenson 2007) were assumed to change unpredict-
ably, and thus not accounted for. Finally, areal cover-
ages of projected environmental spaces were clipped
and computed inside a recent permafrost zonation
(Obu et al 2019). This delineation considers isol-
ated permafrost areas in higher detail than the Inter-
national Permafrost Association map (Brown et al
2002).

3. Results

Based on the predicted environmental spaces for
current and future time periods, we classify three
pathways of suitability for landform occurrence; 1)
persisting conditions with suitable topographic and
soil conditions for landform occurrence and climate
remaining favourable, 2) environmental space loss, in
which climatic conditions become unsuitable, and 3)
new environmental spaces with potential for occur-
rences outside current distribution (i.e. suitable topo-
graphy, soil and newly formed climatic conditions).
Finally, we examine the factors affecting landform
occurrence and evaluate the reliability of the predic-
tions.

3.1. Regional changes in environmental spaces
Based on ensemble modelling, the predicted cur-
rent coverage of environmentally suitable spaces is
2.04 × 106 km2 for pingos, 3.12 × 106 km2 for
ice-wedge polygons and 1.40 × 106 km2 for rock
glaciers (figure 2, union of orange and red zones).
Under themoderate 2041–2060 climate-forcing scen-
ario (RCP4.5), the total areas of potential environ-
mental spaces for the studied permafrost landforms
are predicted to reduce to 1.44 × 106 km2 (by 29%),
2.47 × 106 km2 (21%) and 1.08 × 106 km2 (23%),
respectively (figure 2, supplementary tables 2 and
3). By 2061–2080, assuming the RCP8.5 scenario, on
average over 50% of recent environmental spacesmay
be lost.

The largest losses of environmental spaces for
pingos and ice-wedge polygons are concentrated on
northwestern Russia and the middle reaches of major
Arctic rivers (figures 2(a) and (b)). In the zone of dis-
continuous permafrost, suitable conditions for rock
glacier occurrence show a distinctive shift towards
higher elevations. As a result, areal losses are projected
in most areas of current occurrences (figure 2(c)). In
continuous permafrost regions, the projected losses
are generally small.

New environmental spaces are projected to
emerge where air temperatures and precipitation
attain suitable levels for occurrence and other factors

are favourable. For pingos and ice-wedge poly-
gons, new suitable areas (circumpolar totals of 0.67
and 0.33 × 106 km2) predominantly situate across
Canada’s Arctic Archipelago and in the Taymyr Pen-
insula (figures 2(a) and (b)). Pingo environments
show a poleward shift, while suitable conditions for
ice-wedge polygons are predicted in diverse land-
scapes amidst the recent occurrences. However, suit-
ability for recent pingos, also, is predicted in many
locations on Canadas’s Arctic islands even though
not visible in the small-scale map (figure 2(a)). The
largest areal increases in potentially suitable condi-
tions for rock glacier occurrence (0.15 × 106 km2)
appear in northern Alaska, high-Arctic Canada, east-
ern Greenland and Far-Eastern Russia (figure 2(c)).
The general trajectory of the changes is towards
colder regions of continuous permafrost. Based on
the climate-change scenarios, both air temperature
and rainfall show distinct increases at grid cells with
observed landform occurrences (figure 3). Snowfall is
projected to decrease at rock glacier sites, in contrast
to the increase in rainfall (figures 3(c) and (d)).

3.2. Climatic controls and sensitivity of permafrost
landforms
According to the analyses of variable importance
and response shapes, the optimal conditions for pin-
gos and ice-wedge polygons at a circumpolar scale
are similar (figures 4(a)–(c), supplementary figure
3) and characterized by flat topography with mod-
erately high soil moisture, low rain- and snowfall
(<~300mm), and TDD (◦C-days) of less than ~2000.
For ice-wedge polygons, FDDalso have a notable con-
tribution indicating that their occurrence requires at
least ~2500 ◦C-days. Notably, figure 3 suggests that
FDD will drop below 2000 at many pingo and ice-
wedge polygon sites regardless of the climate-change
scenario.

Rock glacier occurrence increased on coarse-
sediment slopes with low wetness index, TDD less
than ~1200 ◦C-days, and FDD between ~1000 and
4500 ◦C-days (figure 4(d)). Increased probability of
occurrence towards minimum FDD values in the
dataset suggests that rock glaciers exist across a wide
range of cold climates although most landforms in
the dataset have relatively high FDD values (figure
3(b)). Each landform shows a clear decline in prob-
ability of occurrence when TDD exceeds ~1000 ◦C-
days (figures 4(b)–(d)). The response of rock glaciers
to increasing TDD is especially sharp. An even more
abrupt threshold is found between rainfall and both
pingos and ice-wedge polygons.

3.3. Statistical and spatial evaluations
To assess model fit and predictive performance we
used a split-sample approach; the models were calib-
rated using 70% of the data and evaluated against the
remaining 30% of observations. Based on 100-fold
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Figure 2. Predicted changes in potential environmental spaces of the studied landforms across the Northern Hemisphere
permafrost domain. Potential environmental spaces are depicted for pingos (a), ice-wedge polygons (b) and rock glaciers (c) in
2041–2060 under a moderate representative concentration pathway (RCP4.5) climate-change scenario. Bars (d) depict the
predicted areas of persisting conditions for landform occurrence as well as potential lost and new environmental spaces in the
given scenario. The remaining scenarios are presented in the supplementary material as follows: RCP4.5 for 2061–2080
(supplementary figure 5), RCP8.5 for 2041–2060 (supplementary figure 6) and 2061–2080 (supplementary figure 7).

cross-validation, our approach predictedwell the per-
mafrost landform occurrences (figure 5). Ensemble
method yielded the highest classification accuracy
(AUC and TSS) in all cases and thus superior per-
formance. Rock glacier models had the highest R2,
AUC and TSS values, yet respective ensemble aver-
ages in pingo and ice-wedge polygon models also
indicated excellent predictive performance. Moder-
ate between-model variability was observed. GBM
and RF best explained the variation in each land-
form occurrence having R2 values at or above 0.90
(figure 5).

In key regions of landform distribution, the mod-
els largely agreed (figure 6). High inter-model vari-
ability was encountered in poorly sampled regions,
such as the Tibetan Plateau where GLM and GAM
predicted notably larger ice-wedge polygon dis-
tributions than GBM and RF, which both yiel-
ded more constrained environmental spaces (fig-
ure 6(d)). The lower evaluation statistics of GLM
and GAM in pingo modelling (figure 5(a)) may
explain themodel disagreement inmany regions (fig-
ure 6(a)). In cases like these, the ensemble method
facilitates controlling for prediction uncertainty by

allowing for a conservative model agreement-based
assessment. Despite superior model performance,
ensemble models failed to identify a few known
regions for observed occurrence. For example, only
GBM and RF predicted pingo occurrence potential
in Svalbard and eastern Greenland (figure 6(a)).
Evaluations of spatial uncertainty such as presen-
ted here help identifying regions and environmental
conditions where additional investigations should
be made and thereby improve future model
performance.

4. Discussion

The predicted losses of environmental spaces are
largely associated with regions of projected near-
surface permafrost thaw in the near future due to
warming climate (e.g. Slater and Lawrence 2013,
Chadburn et al 2017), but not exclusively, as areas
of continuous permafrost in, e.g. northern Siberia
may also become unsuitable for pingos and ice-wedge
polygons. Based on our analyses, the environmental
suitability for these landforms will be foremostly
constrained by increasing TDD and rainfall. These
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Figure 3. Changing climatic conditions at the sites of observed permafrost landforms. The graphs show the distribution of
thawing degree-days (TDD) (a), freezing degree-days (FDD) (b), rainfall (c) and snowfall (d) at the observation sites of each
studied landform under representative concentration pathways RCP4.5 and RCP8.5 and for two periods; 2041–2060 and
2061–2080. Box margins depict the first and third quartiles of respective values with black line placed at median. Notches show
confidence intervals around the median. Outliers (>1.5 times the inter-quartile range away from the quartiles) are indicated with
cross markers.

findings suggest that warmer and wetter summers,
and the projected thickening of the active layer (Aalto
et al 2018, Peng et al 2018) can melt pingo ice
(Grosse and Jones 2011) and ice wedges close to
the ground surface in these regions, as observed
elsewhere in the Arctic (e.g. Fortier et al 2007,
Liljedahl et al 2016, Bernard-Grand’Maison and Pol-
lard 2018, Farquharson et al 2019). First studies con-
sidering thermokarst-inducing processes in a numer-
ical model indeed project substantial surface perma-
frost degradation and widespread landscape collapse
even for the currently still cold North-East Siberian
permafrost region under a strongly warming climate
scenario (RCP8.5) (Nitzbon et al 2020), which is
largely in line with our findings. Alongside increasing
air temperatures, increased rainfall has been shown to
stimulate permafrost thaw (Douglas et al 2020).

Importantly, predicted losses do not imply com-
plete thaw of permafrost at depth but rather that the
permafrost landforms can be lost due to conditions
becoming unfavourable for their occurrence. How-
ever, ground ice in the landforms can be still pro-
tected from thaw by ecosystem properties, such as
insulation by thick layers of peat (Shur and Jorgen-
son 2007) or cooling effect of cold air circulation
in blocky rock glacier surfaces (Jones et al 2019).

Local hydro-topographical and ecological properties
can also determine whether prolonged degradation
leads to drainage or wetting of landscape, and thus
the potential release of greenhouse gases (Jorgen-
son et al 2015, Liljedahl et al 2016, Nitzbon et al
2020).

Rainfall was the most important single vari-
able delineating suitable conditions for pingos and
ice-wedge polygons at the circumpolar scale, while
TWI and FDD foremostly affected rock glacier occur-
rence potential. Even though these were central
factors, the results implied that local topography and
soil properties hold notable roles in constraining finer
scale environmental suitability for the landforms.
Based on the findings, it is suggested that increases
in the amount of rainfall to above ~200 mm (figures
4(b) and (c)) can severely limit pingo and ice-wedge
polygonoccurrence potential. In the case of ice-wedge
polygons, TDD had nearly as an important of a con-
tribution suggesting that air temperature is the central
factor for their occurrence. Pingos also showed a sec-
ondary relation to TDD yet rainfall was more domin-
ant in their case.

The effect of rainfall is due arguably to the
increased conduction of heat into the ground (Jor-
genson et al 2006, Iijima et al 2010) but also the
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Figure 4. The relative importance of environmental factors for the studied landforms and response curves for the key predictors.
Variable importance scores for individual environmental predictors based on average over four models (results from generalized
linear model (GLM), generalized boosting method (GBM), generalized additive model (GAM), and random forest (RF)) are
presented for pingos, ice-wedge polygons and rock glaciers (a). Response curves show the fitted response shapes of four most
important predictors with pingos (b), ice-wedge polygons (c) and rock glaciers (d), i.e. when other predictors are held constant at
their mean value (Elith et al 2005). The response curves for the remaining predictors are presented in supplementary Figure 3.
Abbreviated predictors are thawing- and freezing degree-days (TDD and FDD, ◦C-days), topographic wetness index (TWI), soil
organic carbon content (SOC, g kg−1), coarse and fine sediment proportions (Coarse and Fine, %), slope angle (Slope, ◦),
coverage of water bodies (WaterCov, %), and potential incident solar radiation (PISR, MJ cm−2 a−1).

Figure 5. Statistical evaluation metrics by modelling technique. The averages of true skill statistic (TSS) and area under the
receiving operating characteristic curve (AUC) values with one standard deviation (whiskers) based on 100-fold cross validation
are shown for pingos (a), ice-wedge polygons (b) and rock glaciers (c). The denoted modelling techniques are generalized linear
models (GLM), generalized boosting method (GBM), generalized additive models (GAM), random forest (RF) and
committee-averaging-based ensemble of the former. Also displayed are model-wise adjusted coefficient of determination (R2)
values for each permafrost landform.

introduction of advective heat (Kane et al 2001).
Rainfall also has been shown to induce abrupt thaw
processes in ice-rich permafrost terrain (Kokelj et al
2015). Owing to the nonlinear response shape, the

found effect also applies the otherway; suitable condi-
tions can emerge if currently very dry areas begin to
receive higher rainfall (>~100 mm, figures 4(b) and
(c)) in the future, provided that air temperature and

8



Environ. Res. Lett. 15 (2020) 104065 O Karjalainen et al

Figure 6. Inter-model variability in predicted potential environmental spaces for permafrost landform occurrence in 1950–2000.
Graded colours indicate the level of model agreement from low (yellow, one model predicts occurrence) to high (blue, all four
models predict occurrence) in pingo (a), ice-wedge polygon (b) and rock glacier modelling (c). Predicted environmental spaces
for ice-wedge polygons in the Tibetan Plateau are depicted in panel d.

other conditions are suitable. Some of rainfall’s con-
tribution could be attributed to its moderately strong
correlation with TDD in the modelling data (sup-
plementary figure 4). Notwithstanding, the analysis
of variable importance suggested that rainfall had a
greater relative effect than TDD, especially for pingos
(figure 4(a)).

The responses of pingos and ice-wedge polygons
with rainfall, and rock glaciers with air temperature,
were strong and supported by each method. The
projections of future climate, however, include uncer-
tainty, especially in mountainous areas (Hijmans et al
2005, Hoegh-Guldberg et al 2018). The interpol-
ated climate surfaces cannot fully account for oro-
graphic precipitation patterns or wind-induced snow
transport, for example. Ice-wedge polygons’ response
to snowfall indicated a lowered occurrence prob-
ability with increasing snowfall (supplementary fig-
ure 3) in line with the observations by Kokelj et al
(2014). However, climatic predictors averaged over a
series of decades cannot represent future dynamics

of snow depth-controlled frost cracking under win-
tertime cold spells or other extreme air temperature,
precipitation or disturbance (i.e. fire) events, which
play a role in the formation and degradation of espe-
cially ice-wedge polygons (Jorgenson et al 2006, Jones
et al 2015, Liljedahl et al 2016, Kanevskiy et al 2017).
Based on experimental evidence (Allard and Kasper
1998, Christiansen 2005), thermal contraction crack-
ing occurs during prolonged cooling periods with
ground temperatures below −20 to −15 ◦C. In this
study, the moderate importance of FDD and snow-
fall for ice-wedge polygons suggests that higher tem-
poral resolution of climate predictors (monthly to
sub-monthly) and a more explicit representation of
snow cover variation are needed to estimate thermal
cracking potential.

Recent studies show that ice-wedge polygons
formed in centennial to millennial time scales can
be lost by melting of their uppermost portion in a
few decades (Jorgenson et al 2006, Liljedahl et al
2016, Fraser et al 2018, Farquharson et al 2019).
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Large pingos with thick insulating overburdens are
to a degree resilient to short-term changes in cli-
mate (Mackay 1998), but evidence of collapsed and
paleo-pingos in concurrent non-permafrost environ-
ments confirms their climate sensitivity over longer
time scales (Vandenberghe and Pissart 1993, Jones
et al 2012). Degradation of ice-wedge polygons at
local scales demonstrates large spatial variation owing
to complex interactions between, e.g. ground ice,
wetness conditions and microtopography (Kanevskiy
et al 2017, Steedman et al 2017, Fraser et al 2018, Nitz-
bon et al 2019, 2020). Notwithstanding, some have
argued that future thermokarst rates at broader scales
mainly depend on the magnitude of regional climate
change (Olefeldt et al 2016). Degradation of any of
the studied permafrost landforms can also occur due
to their natural lifecycles without external forcing
(Washburn 1980, Mackay 1988).

Few quantitative or spatial estimates exist to
compare with the predicted coverages. Mackay
(1972) estimated that ice-wedge polygons covered
2.6 × 106 km2 of the Northern Hemisphere, which
falls relatively close to our ensemble prediction for
1950–2000 (3.1 × 106 km2). On a regional level, our
ice-wedge polygon predictions for the main occur-
rence areas are in line with a recent Canada-wide
modelling of wedge-ice content (O’Neill et al 2019),
yet regional discrepancies are visible (section S3, sup-
plementary material).

The discrepancies between the models (figures
4 and 5) are argued to have stemmed from dif-
ferent initial model assumptions and parameteriza-
tions (Thuiller et al 2009). For example, only GBM
and RF captured a decline in rock glacier occurrence
probability when FDD approached zero, i.e. milder
freezing-season conditions (figure 4(d)). GLM and
GAM overlooked this threshold and extended to too
warm and flat areas, such as periglacial environments
more characteristically affected by extensive solifluc-
tion processes, e.g. in northern Scandinavia (Aalto
et al 2017). The wide distribution may also have been
partly attributed to the inclusion of moraine-derived
rock glaciers (section 1, supplementary material)
which are easily mixed with debris-covered glaciers,
and thus may extend below lower permafrost bound-
ary limits. Moreover, some of the compiled observa-
tions might have been relict rock glaciers, and thus
possibly lacked permafrost, as suggested by relatively
high TDD and FDD for many objects in the dataset
(figures 3(a) and (b)). The discrimination of intact
rock glaciers from these landforms is often challen-
ging, especially fromoptical remote sensing data from
which a large part of observations was mapped.

Considering the projected new regions with suit-
able environmental spaces for landforms, we argue
that the dependency of landform growth on local geo-
morphic and hydrologic conditions and glacial his-
tory means that they are likely to occur in more con-
strained environments than estimated in this study.

Prediction of pingo formation potential, for example,
is difficult owing to its dependency on special ground-
water pressure conditions (governed by underlying
substrate properties) and dynamic processes such
as lake drainage (Mackay 1998). Here, coarse sed-
iments showed moderate importance and realistic
response shapes with the landforms. Due to relatively
few observations of soil properties within the perma-
frost domain available to produce the soil data lay-
ers (Hengl et al 2017), the data used here likely have
a limited ability in depicting landform-scale vari-
ation in grain size proportions. Moreover, although
we argue that the ~1 km resolution is sufficient to
delineate topo-climatic conditions for most rock gla-
ciers, there remains a need to account for site-specific
debris availability, lithology and melt-water dynam-
ics, or groundwater conditions and sedimentary his-
tory in the cases of pingos and ice-wedge polygons.
Not considering all constraining factors for land-
form development may cause modelling to overes-
timate the extent of new suitable conditions, and sub-
sequently the presented proportions of lost environ-
mental spaces are arguably conservative.

Ultimately, we model suitable conditions for
landform occurrences in recent and future climates,
but cannot presently address the physical processes,
such as ground-ice degradation or aggradation and
associated heat fluxes, behind landform development
using our approach. The vulnerability of perma-
frost to atmospheric warming is highly complex and
depends on multiple dynamic processes acting in the
surface water, snow, vegetation and soil layers and
related positive and negative feedbacks (Shur and
Jorgenson 2007, Nitzbon et al 2019). Moreover, the
thermal inertia of ice-rich ground encumbers per-
mafrost warming (Grosse et al 2011). Ground ice
and associated phase changes of water (i.e. the latent
heat effect), as well as the content of unfrozen water
in frozen soils (Hu et al 2020), are key constituents
of the near-surface permafrost response to climate
forcing that may not be uniform in different initial
ground temperature conditions (Riseborough 1990).
Not considering such transient effects lowers our abil-
ity to assess landform occurrence potential in the
future, given that the used approach assumes equilib-
rium state between landforms and climate. Process-
based models could be appropriate for assessing the
physical responses and related feedbacks of climate
change because of their explicit parameterization of
heat fluxes and transient effects in the surface layers
(e.g. Harris et al 2009). However, they are often con-
ducted at coarse spatial resolutions, which limits their
applicability in assessing permafrost landforms at a
relevant scale in a hemispheric extent.

Statistical modelling allows for producing reas-
onably accurate information on the suitable envir-
onments for permafrost landforms at a high resol-
ution. This information can be used to link locally
resolved detailed land surface processes to globally
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relevant developments due to climate change. Predic-
tions can also facilitate initial landform mapping in
understudied regions although their accuracy at pixel
resolution (~1 km2) is to be taken cautiously due to
the documented prediction errors (figure 5). In addi-
tion to likely profound geomorphic changes, ground
ice degradation in the areas of projected lost environ-
mental conditions may greatly alter hydrological and
biogeochemical processes. In addition, the eventual
disappearance of permafrost landforms represents a
loss in local geodiversity, and thereby affects biod-
iversity (Antonelli et al 2018). From a human activ-
ity point of view, ground ice degradation and loss of
permafrost landforms can affect freshwater availabil-
ity (Jones et al 2018, 2019) and infrastructure integ-
rity (Raynolds et al 2014, Kanevskiy et al 2017). Using
permafrost landforms as proxies for massive ice, our
modelling yielded novel information on fine-scale
spatial variation of high ground ice content across
permafrost landscapes. It should be noted that pin-
gos occupy a very small proportion of landscapes rel-
ative to ice-wedge polygonal terrain or even large rock
glaciers, and thus the potential amount of ground ice
expected in a grid cell is different for each landform.

5. Conclusions

From this study the following conclusions could be
drawn:

• The suitable environmental conditions for perma-
frost landforms at the circumpolar scale are closely
related to climate and prone to shift along projec-
ted regional changes in air temperature and pre-
cipitation.

• On average, the landforms are projected to lose
more than one-fifth of their suitable environments
under a moderate climate scenario (RCP4.5) and
around one-third under a very high baseline emis-
sion scenario (RCP8.5) by midcentury.

• The sensitivity of pingos and ice-wedge polygons
to the amount of rainfall was unambiguous, albeit
TDD was almost as important for ice-wedge poly-
gons.

• Alongside air temperatures, precipitation regime
is suggested to be a key constraining factor of
geomorphic development outside mountainous
environments.

• For rock glaciers, air temperature and topo-
graphy primarily controlled the occurrence poten-
tial. However, the approach had a limited ability
to separate suitable environments for rock glaciers
from those for other glacial or periglacial slope
processes.

The predicted changes in environmental spaces
suitable for the studied permafrost landforms will
affect Arctic landscapes and their geomorphology
across large areas. The potential implications should

be considered when assessing impacts of climate
change on natural and human systems.
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