73 research outputs found

    Suomessa toimivien terveydenhuoltoon ja hyvinvointiin kes- kittyneiden rahastojen tuloksellisuus vuosina 2005–2015

    Get PDF
    Suomessa sijoitusrahastojen määrä on kasvanut 2000-luvulta. Merkittävä osa tulokselli- suuteen liittyvästä tutkimuksesta keskittyy yleisiin sijoitusrahastoihin. Suomalaisista tervey- denhuoltoon ja hyvinvointiin keskittyneistä rahastoista on melko vähän tutkittua tietoa. Vä- estön ikääntyminen ja elintason nousu ovat globaaleja ilmiöitä, jotka tulevat lisäämään ter- veydenhuollon palveluiden kysyntää ja vaikuttavat lääketeollisuuden kehitykseen. Tutkimuksen tarkoituksena on tutkia Suomeen rekisteröityjen terveydenhuoltoon ja hyvin- vointiin keskittyneiden rahastojen tuloksellisuutta pitkällä aikavälillä. Tavoitteena on selvit- tää rahastojen menestymistä suhteessa yleismarkkinaindeksiin ja toimialan vertailuindek- siin. Rahastojen tuloksellisuutta tutkitaan myös suhteessa markkina-ajoitukseen sekä tuot- toa ja riskiä verraten. Tutkimusaineisto koostuu kaikista Suomeen rekisteröityneitä sijoitusrahastoja, jotka sijoit- tavat globaalisti terveydenhuolto- ja hyvinvointialan osakkeisiin. Tutkimuksessa käytetään aineistoa aikaväliltä 2005–2015. Tutkimus toteutetaan kvantitatiivisena tutkimuksena. Ra- hastojen suorituskykyä on tutkittu Sharpen luvulla, Treynorin mittarilla, Jensenin alphalla sekä markkina-ajoitusta Treynor-Mazuyin mallilla. Tutkimustulosten mukaan suomalaiset terveydenhuoltoon ja hyvinvointiin keskittyneet ra- hastot ovat pärjänneet hyvin yleismarkkinaindeksiin verrattuna, mutta eivät ole pystyneet keskimäärin voittamaan toimialansa vertailuindeksiä. Rahastojen tuotto ja riski ovat tasa- painossa. Rahastojen kyvystä ajoittaa omaa markkinaansa vastaan ei saatu juurikaan po- sitiivisia indikaattoreita

    Measuring tree growth using terrestrial laser scanning

    Get PDF
    Forests are dynamic ecosystems that are constantly changing. The most common natural reasons for change in forests are the growth and death of trees, as well as the damage occurring to them. Tree growth appears as an increment of its structural dimensions, such as stem diameter, height, and crown volume, which all affect the structure of a tree. Repeated measurements of tree characteristics enable observations of the respective increments indicating tree growth. According to current knowledge, the tree growth process follows the priority theory, where trees aim to achieve sufficient lightning conditions for the tree crown through primary growth, whereas increment in diameter results from the secondary growth. Tree growth is known to have an effect on the carbon sequestration potential of trees as well as on the quality of timber. To improve the understanding of the underlying cause–effect relations driving tree growth, methods to quantify structural changes in trees and forests are needed. The use of terrestrial laser scanning (TLS) has emerged during the recent decade as an effective tool to determine attributes of individual trees. However, the capacity of TLS point cloud-based methods to measure tree growth remains unexplored. This thesis aimed at developing new methods to measure tree growth in boreal forest conditions by utilizing two-date TLS point clouds. The point clouds were also used to investigate how trees allocate their growth and how the stem form of trees develops, to deepen the understanding of tree growth processes under different conditions and over the life cycle of a tree. The capability of the developed methods was examined during a five- to nine-year monitoring period with two separate datasets consisting of 1315 trees in total. Study I demonstrated the feasibility of TLS point clouds for measuring tree growth in boreal forests. In studies II and III, an automated point cloud-based method was further developed and tested for measuring tree growth. The used method could detect trees from two-date point clouds, with the detected trees representing 84.5% of total basal area. In general, statistically significant changes in the examined attributes, such as diameter at breast height, tree height, stem volume, and logwood volume, were detected during the monitoring periods. Tree growth and stem volume allocation seemed to be more similar for trees growing in similar structural conditions. The findings obtained in this thesis demonstrate the capabilities of repeatedly acquired TLS point clouds to be used for measuring the growth of trees and for characterizing the structural changes in forests. This thesis showed that TLS point cloud-based methods can be used for enhancing the knowledge of how trees allocate their growth, and thus help discover the underlying reasons for processes driving changes in forests, which could generate benefits for ecological or silvicultural applications where information on tree growth and forest structural changes is needed

    Puiden kasvun mittaaminen maastolaserkeilauksella

    Get PDF
    Forests are dynamic ecosystems that are constantly changing. The most common natural reasons for change in forests are the growth and death of trees, as well as the damage occurring to them. Tree growth appears as an increment of its structural dimensions, such as stem diameter, height, and crown volume, which all affect the structure of a tree. Repeated measurements of tree characteristics enable observations of the respective increments indicating tree growth. According to current knowledge, the tree growth process follows the priority theory, where trees aim to achieve sufficient lightning conditions for the tree crown through primary growth, whereas increment in diameter results from the secondary growth. Tree growth is known to have an effect on the carbon sequestration potential of trees as well as on the quality of timber. To improve the understanding of the underlying cause–effect relations driving tree growth, methods to quantify structural changes in trees and forests are needed. The use of terrestrial laser scanning (TLS) has emerged during the recent decade as an effective tool to determine attributes of individual trees. However, the capacity of TLS point cloud-based methods to measure tree growth remains unexplored. This thesis aimed at developing new methods to measure tree growth in boreal forest conditions by utilizing two-date TLS point clouds. The point clouds were also used to investigate how trees allocate their growth and how the stem form of trees develops, to deepen the understanding of tree growth processes under different conditions and over the life cycle of a tree. The capability of the developed methods was examined during a five- to nine-year monitoring period with two separate datasets consisting of 1315 trees in total. Study I demonstrated the feasibility of TLS point clouds for measuring tree growth in boreal forests. In studies II and III, an automated point cloud-based method was further developed and tested for measuring tree growth. The used method could detect trees from two-date point clouds, with the detected trees representing 84.5% of total basal area. In general, statistically significant changes in the examined attributes, such as diameter at breast height, tree height, stem volume, and logwood volume, were detected during the monitoring periods. Tree growth and stem volume allocation seemed to be more similar for trees growing in similar structural conditions. The findings obtained in this thesis demonstrate the capabilities of repeatedly acquired TLS point clouds to be used for measuring the growth of trees and for characterizing the structural changes in forests. This thesis showed that TLS point cloud-based methods can be used for enhancing the knowledge of how trees allocate their growth, and thus help discover the underlying reasons for processes driving changes in forests, which could generate benefits for ecological or silvicultural applications where information on tree growth and forest structural changes is needed

    A model for predicting the diameter and volume of the heartwood of Scots pine

    Get PDF
    MĂ€nnyn rungossa kehittyy luontaisilta ominaisuuksiltaan muusta puuaineksesta poikkeavaa sydĂ€npuuta. MĂ€nnyn sydĂ€npuu on luontaisesti lahonkestĂ€vÀÀ ja siitĂ€ voidaan valmistaa muita puun osia paremmin vaativissakin olosuhteissa kĂ€ytettĂ€viĂ€ erikoistuotteita. TĂ€mĂ€n tutkimuksen tarkoituksena oli kehittÀÀ menetelmĂ€, jonka avulla voidaan ennustaa paremmin puun rungossa olevan sydĂ€npuun lĂ€pimitta ja tilavuus. Koska sydĂ€npuun havaitseminen maasto-olosuhteissa puun rungosta ei ole tĂ€llĂ€ hetkellĂ€ mah-dollista puuta vahingoittamatta, tarvitaan menetelmĂ€, jolla voidaan luotettavasti ennustaa puiden sisĂ€l-tĂ€mĂ€n sydĂ€npuun mÀÀrĂ€. SydĂ€npuun lĂ€pimittaa puun kahdeksalla suhteellisella korkeudella kuvaavia puun tunnuksia analysoitiin lineaarisen regressioanalyysin avulla. Kun parhaiten sydĂ€npuun muodostumista selittĂ€vĂ€t muuttujat oli valittu, laadittiin sydĂ€npuun lĂ€pimitan ennustamiseksi lineaariset sekamallit, joiden avulla voidaan en-nustaa mĂ€nnyn sydĂ€npuun lĂ€pimitta kyseisillĂ€ korkeuksilla. Ennustettujen lĂ€pimittojen avulla voitiin johtaa yksittĂ€isen puun sydĂ€npuun runkokĂ€yrĂ€, joka kuvaa sydĂ€npuun kapenemista puun pituuden suh-teen. Laadittua runkokĂ€yrÀÀ hyödyntĂ€mĂ€llĂ€ voitiin lopulta ennustaa puulle sydĂ€npuun kokonaistilavuus integroimalla. Puun rinnankorkeuslĂ€pimittaa ja pituutta selittĂ€vinĂ€ muuttujina kĂ€yttĂ€neet mallit kykenivĂ€t selittĂ€mÀÀn sydĂ€npuun lĂ€pimitan vaihtelusta suhteellisilla korkeuksilla 2,5 % - 70 % laskennallisella selitysasteella 0,84 – 0,95 mallien suhteellisen RMSE:n ollessa 15 - 35 %. Suhteellisille korkeuksille 85 % ja 95 % laaditut ennusteet eivĂ€t onnistuneet yhtĂ€ hyvin (selitysaste 0,65 ja 0,06 sekĂ€ RMSE 74 % ja 444 %). Olennaista on kuitenkin se, ettĂ€ ennusteet onnistuivat parhaiten sillĂ€ alueella, jossa esiintyy suurin osa mĂ€nnyn sydĂ€n-puusta. LĂ€pimittamallien avulla laadittujen yksittĂ€isten puiden sydĂ€npuun tilavuusennusteiden suhteelli-sen RMSE:n arvo oli 35 % ja harha -5 %. Tutkimuksen tulosten perusteella voidaan todeta, ettĂ€ sydĂ€npuun lĂ€pimitan ennustaminen tarkasti puun rungon tyviosassa on helpompaa kuin latvaosassa. Vaikeudet johtuvat suuresta puiden vĂ€lisestĂ€ vaihtelusta sydĂ€npuun esiintymisessĂ€ tietyillĂ€ korkeuksilla puun latvassa. SydĂ€npuun tilavuusennustei-den hyödyntĂ€minen yksittĂ€isten mĂ€ntyjen, mutta myös suurempien kohteiden, kuten metsikkökuvioi-den, sydĂ€npuuvarannon kartoittamiseen on mahdollista jo nyt. Tarkempien tulosten saamiseksi tarvit-taisiin kuitenkin entistĂ€ kattavampia ja yksityiskohtaisempia tutkimusaineistoja, joiden avulla voitaisiin selvittÀÀ sydĂ€npuun kĂ€yttĂ€ytymisessĂ€ yhĂ€ tuntemattomia asioita.There develops heartwood in the stems of the Scots pines (Pinus sylvestris L.) that differs by its natural characteristics from the other sections of the wood material in the pine stem. Pine heartwood is natural-ly decay resistant and it can be used in conditions where the normal wood products can’t be used. The aim of this study was to develop a method, which can be used for predicting the diameter and volume of heartwood. There is a need for this kind of method, because it still is not possible to estimate the amount of heartwood in a standing tree without damaging the tree itself. The variables measured from single trees describing the diameter of the heartwood on eight relative heights were analysed by using linear regression. When the best explanatory variables were selected, a mixed linear model was created for each of the relative heights. The mixed linear models could also be used for predicting the diameter of pine heartwood at those relative heights. With the help of the pre-dicted diameters a taper curve could be created for the heartwood. The pine heartwood taper curve describes the tapering of the heartwood as function of the tree height. By integrating the taper curve, it was also possible to predict the total volume of the heartwood in a single tree. The models that used tree diameter at breast height and the length of the tree as explanatory variables were able to explain the variation of heartwood diameter on relative heights between 2,5 % and 70 % with coefficient of determination ranging from 0,84 to 0,95 and also recorded a relative RMSE from 15 % to 35 %. Models for relative heights of 85 % and 95 % were not as good as the others (R2-values 0,65 and 0,06 as well as RMSE-values of 74 % and 444 %). Despite not succeeding on all the relative heights, the most important thing is that the models worked best on that area of the stem where most of the heart-wood is located. The volume predictions for single trees based on the heartwood diameter models rec-orded relative RMSE of 35 % and bias of -5 %. Based on the results of the study it shows that exact prediction of pine heartwood diameter is much easier in the base of the stem than in the top part of it. A great deal of variation could be observed whether there was heartwood or not in the top parts of the stem. The volume of heartwood can already be estimated for single trees, but the amount of heartwood can be predicted also in larger scale, such as forest stands. But to get more accurate results in the future, there is a need for more detailed and com-prehensive research data, which would help to determine the still unknown parts of the behaviour of pine heartwood

    Euroalueen budjettialijÀÀmien vaikutukset yksityiseen kulutukseen

    Get PDF
    Tutkielman aihe on Euroopan talous- ja rahaliiton jÀsenmaiden budjettialijÀÀmÀt ja valtionvelat vakaus- ja kasvusopimukseen nÀhden ja nÀiden vaikutukset yksityiseen kulutukseen alijÀÀmÀisissÀ maissa. KeskeisenÀ lÀhtökohtana on selvittÀÀ, ovatko vakaus- ja kasvusopimuksen mÀÀrittelemÀt budjettirajoitteet tarpeellisia talouden ohjauksessa. Tutkielmassa pyritÀÀn tulkitsemaan, mikÀ finanssipolitiikan ja yksityisen kulutuksen relaatiosta kehitetty teoria saa tukea Euroopan talous- ja rahaliiton tapauksessa. Tutkimuksessa kÀydÀÀn ensin lÀpi vakaus- ja kasvusopimuksen mÀÀrÀykset ja tarkoitus. TÀmÀn jÀlkeen esitellÀÀn tÀhÀn mennessÀ esiintyneitÀ alijÀÀmiÀ ja finanssipolitiikkaa EMU:n jÀsenmaissa. Teoriaosuudessa kÀydÀÀn lÀpi julkisen talouden pitkÀn ajan budjettirajoite sekÀ erilaiset teoreettiset nÀkemykset budjettialijÀÀmien vaikutuksista yksityiseen kulutukseen. Empiriaosuudessa tutkitaan teorioiden valossa aikaisempia tutkimuksia ja tilastoaineistoa kÀyttÀen, minkÀlaisia vaikutuksia budjettialijÀÀmillÀ on ollut yksityiseen kulutukseen Euroopan talous- ja rahaliiton tÀhÀnastisessa historiassa ja tukevatko havainnot jotakin olemassa olevaa teoriaa. Tutkimusten tulosten mukaan alijÀÀmÀrahoitteinen, julkisia menoja lisÀÀvÀ finanssipolitiikka ei ole saanut aikaan yksityisen kulutuksen kasvua euroalueella. Eurooppalaisilla kuluttajilla on tulevaisuuden huomioon ottava ricardolainen suunnitteluhorisontti. TÀmÀn perusteella vakaus- ja kasvusopimuksen rajoitteita voidaan pitÀÀ tarpeellisina ja huomiota tulisi lisÀksi kiinnittÀÀ nykyistÀ enemmÀn myös valtionvelan mÀÀrÀÀn.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Structural Changes in Boreal Forests Can Be Quantified Using Terrestrial Laser Scanning

    Get PDF
    Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS in quantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindrical characteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and forest stands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99–1.22 cm for diameter at breast height (Δdbh), 44.14–55.49 cm2 for basal area (Δg), and 1.91–4.85 m for tree height (Δh). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60–1.13 cm was recorded for changes in basal area-weighted mean diameter (ΔDg), 0.81–2.26 m for changes in basal area-weighted mean height (ΔHg), 1.40–2.34 m2/ha for changes in mean basal area (ΔG), and 74–193 n/ha for changes in the number of trees per hectare (ΔTPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring

    Feasibility of Bi-Temporal Airborne Laser Scanning Data in Detecting Species-Specific Individual Tree Crown Growth of Boreal Forests

    Get PDF
    The tree crown, with its functionality of assimilation, respiration, and transpiration, is a key forest ecosystem structure, resulting in high demand for characterizing tree crown structure and growth on a spatiotemporal scale. Airborne laser scanning (ALS) was found to be useful in measuring the structural properties associated with individual tree crowns. However, established ALS-assisted monitoring frameworks are still limited. The main objective of this study was to investigate the feasibility of detecting species-specific individual tree crown growth by means of airborne laser scanning (ALS) measurements in 2009 (T1) and 2014 (T2). Our study was conducted in southern Finland over 91 sample plots with a size of 32 × 32 m. The ALS crown metrics of width (WD), projection area (A2D), volume (V), and surface area (A3D) were derived for species-specific individually matched trees in T1 and T2. The Scots pine (Pinus sylvestris), Norway spruce (Picea abies (L.) H. Karst), and birch (Betula sp.) were the three species groups that studied. We found a high capability of bi-temporal ALS measurements in the detection of species-specific crown growth (Δ), especially for the 3D crown metrics of V and A3D, with Cohen’s D values of 1.09–1.46 (p-value < 0.0001). Scots pine was observed to have the highest relative crown growth (rΔ) and showed statistically significant differences with Norway spruce and birch in terms of rΔWD, rΔA2D, rΔV, and rΔA3D at a 95% confidence interval. Meanwhile, birch and Norway spruce had no statistically significant differences in rΔWD, rΔV, and rΔA3D (p-value < 0.0001). However, the amount of rΔ variability that could be explained by the species was only 2–5%. This revealed the complex nature of growth controlled by many biotic and abiotic factors other than species. Our results address the great potential of ALS data in crown growth detection that can be used for growth studies at large scales

    Structural Changes in Boreal Forests Can Be Quantified Using Terrestrial Laser Scanning

    Get PDF
    Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS in quantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindrical characteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and forest stands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99–1.22 cm for diameter at breast height (Δdbh), 44.14–55.49 cm2 for basal area (Δg), and 1.91–4.85 m for tree height (Δh). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60–1.13 cm was recorded for changes in basal area-weighted mean diameter (ΔDg), 0.81–2.26 m for changes in basal area-weighted mean height (ΔHg), 1.40–2.34 m2/ha for changes in mean basal area (ΔG), and 74–193 n/ha for changes in the number of trees per hectare (ΔTPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring

    Understanding 3D structural complexity of individual Scots pine trees with different management history

    Get PDF
    Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale-independent metric called "box dimension." This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.Peer reviewe
    • 

    corecore