1,243 research outputs found

    Tests of heat shield materials in intense laser radiation

    Get PDF
    Heat shield materials were tested under intense radiation in a gas dynamic laser. The laser is described and test results are presented

    Effect of weak fluid inertia upon Jeffery orbits

    Full text link
    We consider the rotation of small neutrally buoyant axisymmetric particles in a viscous steady shear flow. When inertial effects are negligible the problem exhibits infinitely many periodic solutions, the "Jeffery orbits". We compute how inertial effects lift their degeneracy by perturbatively solving the coupled particle-flow equations. We obtain an equation of motion valid at small shear Reynolds numbers, for spheroidal particles with arbitrary aspect ratios. We analyse how the linear stability of the \lq log-rolling\rq{} orbit depends on particle shape and find it to be unstable for prolate spheroids. This resolves a puzzle in the interpretation of direct numerical simulations of the problem. In general both unsteady and non-linear terms in the Navier-Stokes equations are important.Comment: 5 pages, 2 figure

    Rotation of a spheroid in a simple shear at small Reynolds number

    Full text link
    We derive an effective equation of motion for the orientational dynamics of a neutrally buoyant spheroid suspended in a simple shear flow, valid for arbitrary particle aspect ratios and to linear order in the shear Reynolds number. We show how inertial effects lift the degeneracy of the Jeffery orbits and determine the stabilities of the log-rolling and tumbling orbits at infinitesimal shear Reynolds numbers. For prolate spheroids we find stable tumbling in the shear plane, log-rolling is unstable. For oblate particles, by contrast, log-rolling is stable and tumbling is unstable provided that the aspect ratio is larger than a critical value. When the aspect ratio is smaller than this value tumbling turns stable, and an unstable limit cycle is born.Comment: 25 pages, 5 figure

    Ablation of carbonaceous materials in a hydrogen-helium arc-jet flow

    Get PDF
    The stagnation-point ablation rates of a graphite, a carbon-carbon composite, and four carbon-phenolic materials are measured in an arc-jet wind tunnel with a 50% hydrogen-50% helium mixture as the test gas. Flow environments are determined through measurements of static and impact pressures, heat-transfer rates to a calorimeter, and radiation spectra, and through numerical calculation of the flow through the wind tunnel, spectra, and heat-transfer rates. The environments so determined are: impact pressure approx. 3 atm, Mach number approx. 2.1, convective heat-transfer rate approx. 14 kw/sq cm, and radiative heat-transfer rate approx. 7 kw/sq cm in the absence of ablation. Ablation rates are determined from the measured rates of mass loss and recession of the ablation specimens. Compared with the predicted ablation rates obtained by running RASLE and CMA codes, the measured rates are higher by about 15% for all tested materials

    The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes

    Get PDF
    Electronic structure of the XeOF2 molecule and its two complexes with HX (X= F, Cl, Br, I) molecules have been studied in the gas phase using quantum chemical topology methods: topological analysis of electron localization function (ELF), electron density, ρ(r), reduced gradient of electron density |RDG(r)| in real space, and symmetry adapted perturbation theory (SAPT) in the Hilbert space. The wave function has been approximated by the MP2 and DFT methods, using APF-D, B3LYP, M062X, and B2PLYP functionals, with the dispersion correction as proposed by Grimme (GD3). For the Xe-F and Xe=O bonds in the isolated XeOF2 molecule, the bonding ELF-localization basins have not been observed. According to the ELF results, these interactions are not of covalent nature with shared electron density. There are two stable F2OXe…HF complexes. The first one is stabilized by the F-H…F and Xe…F interactions (type I) and the second by the F-H…O hydrogen bond (type II). The SAPT analysis confirms the electrostatic term, Eelst (1) and the induction energy, Eind (2) to be the major contributors to stabilizing both types of complexes

    The role of inertia for the rotation of a nearly spherical particle in a general linear flow

    Full text link
    We analyse the angular dynamics of a neutrally buoyant nearly spherical particle immersed in a steady general linear flow. The hydrodynamic torque acting on the particle is obtained by means of a reciprocal theorem, regular perturbation theory exploiting the small eccentricity of the nearly spherical particle, and assuming that inertial effects are small, but finite.Comment: 7 pages, 1 figur

    SRRs Embedded with MEMS Cantilevers to Enable Electrostatic Tuning of the Resonant Frequency

    Get PDF
    A microelectromechanical systems (MEMS) cantilever array was monolithically fabricated in the gap region of a split ring resonator (SRR) to enable electrostatic tuning of the resonant frequency. The design consisted of two concentric SRRs each with a set of cantilevers extending across the split region. The cantilever array consisted of five beams that varied in length from 300 to 400 μm, with each beam adding about 2 pF to the capacitance as it actuated. The entire structure was fabricated monolithically to reduce its size and minimize losses from externally wire bonded components. The beams actuate one at a time, longest to shortest with an applied voltage ranging from 30–60 V. The MEMS embedded SRRs displayed dual resonant frequencies at 7.3 and 14.2 GHz or 8.4 and 13.5 GHz depending on the design details. As the beams on the inner SRR actuated the 14.2 GHz resonance displayed tuning, while the cantilevers on the outer SRR tuned the 8.4 GHz resonance. The 14.2 GHz resonant frequency shifts 1.6 GHz to 12.6 GHz as all the cantilevers pulled-in. Only the first two beams on the outer cantilever array pulled-in, tuning the resonant frequency 0.4 GHz from 8.4 to 8.0 GHz

    Assessment of Alertness and Cognitive Performance of Closed Circuit Rebreather Divers With the Critical Flicker Fusion Frequency Test in Arctic Diving Conditions

    Get PDF
    Introduction: Cold water imposes many risks to the diver. These risks include decompression illness, physical and cognitive impairment, and hypothermia. Cognitive impairment can be estimated using a critical flicker fusion frequency (CFFF) test, but this method has only been used in a few studies conducted in an open water environment. We studied the effect of the cold and a helium-containing mixed breathing gas on the cognition of closed circuit rebreather (CCR) divers. Materials and Methods: Twenty-three divers performed an identical dive with controlled trimix gas with a CCR device in an ice-covered quarry. They assessed their thermal comfort at four time points during the dive. In addition, their skin temperature was measured at 5-min intervals throughout the dive. The divers performed the CFFF test before the dive, at target depth, and after the dive. Results: A statistically significant increase of 111.7% in CFFF values was recorded during the dive compared to the pre-dive values (p < 0.0001). The values returned to the baseline after surfacing. There was a significant drop in the divers' skin temperature of 0.48 degrees C every 10 min during the dive (p < 0.001). The divers' subjectively assessed thermal comfort also decreased during the dive (p = 0.01). Conclusion: Our findings showed that neither extreme cold water nor helium-containing mixed breathing gas had any influence on the general CFFF profile described in the previous studies from warmer water and where divers used other breathing gases. We hypothesize that cold-water diving and helium-containing breathing gases do not in these diving conditions cause clinically relevant cerebral impairment. Therefore, we conclude that CCR diving in these conditions is safe from the perspective of alertness and cognitive performance.Peer reviewe

    Comparing laparoscopic antireflux surgery with esomeprazole in the management of patients with chronic gastro-oesophageal reflux disease: a 3-year interim analysis of the LOTUS trial

    Get PDF
    BACKGROUND: With the introduction of laparoscopic antireflux surgery (LARS) for gastro-oesophageal reflux disease (GORD) along with the increasing efficacy of modern medical treatment, a direct comparison is warranted. The 3-year interim results of a randomised study comparing both the efficacy and safety of LARS and esomeprazole (ESO) are reported. METHODS: LOTUS is an open, parallel-group multicentre, randomised and controlled trial conducted in dedicated centres in 11 European countries. LARS was completed according to a standardised protocol, comprising a total fundoplication and a crural repair. Medical treatment comprised ESO 20 mg once daily, which could be increased stepwise to 40 mg once daily and then 20 mg twice daily in the case of incomplete GORD control. The primary outcome variable was time to treatment failure (Kaplan-Meier analysis). Treatment failure was defined on the basis of symptomatic relapse requiring treatment beyond that stated in the protocol. RESULTS: 554 patients were randomised, of whom 288 were allocated to LARS and 266 to ESO. The two study arms were well matched. The proportions of patients who remained in remission after 3 years were similar for the two therapies: 90% of surgical patients compared with 93% medically treated for the intention to treat population, p = 0.25 (90% vs 95% per protocol). No major unexpected postoperative complications were experienced and ESO was well tolerated. However, postfundoplication complaints remain a problem after LARS. CONCLUSIONS: Over the first 3 years of this long-term study, both laparoscopic total fundoplication and continuous ESO treatment were similarly effective and well-tolerated therapeutic strategies for providing effective control of GORD
    corecore