88 research outputs found
Current status and first detection of Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) in live trees in the Iberian Peninsula
The black stem borer Xylosandrus germanus (Blandford, 1894) (Coleoptera: Curculionidae: Scolytinae) is a species native to Eastern Asia that has invaded 24 countries worldwide, including 21 European countries, the USA, Canada and New Zealand. On the Iberian Peninsula it was recorded for the first time in traps placed in the Basque Country (Northern Spain) in 2003, but its host plants were unknown. In the present work, three populations of X. germanus are recorded in the east of Spain in Girona, Tarragona and Valencia provinces (Automomous Community of Catalonia, and Valencia, respectively). Specimens were collected in traps and on host plants, showing a wider distribution range now including the east and north-east of the Iberian Peninsula. Infested carob trees (Ceratonia siliqua) were found in agricultural and urban green areas in Tarragona. Ceratonia siliqua is therefore reported here as a new host of X. germanus.This work was partially supported by the DACC (AG-2021-1049 project)
Global sensitivity analysis of leaf-canopy-atmosphere RTMs: Implications for biophysical variables retrieval from top-of-atmosphere radiance data
Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with the atmospheric RTM MODTRAN5. Because of MODTRAN's computational burden and GSA's demand for many simulations, we first developed a surrogate statistical learning model, i.e., an emulator, that allows approximating RTM outputs through a machine learning algorithm with low computation time. A Gaussian process regression (GPR) emulator was used to reproduce lookup tables of TOA radiance as a function of 12 input variables with relative errors of 2.4%. GSA total sensitivity results quantified the driving variables of emulated TOA radiance along the 400-2500 nm spectral range at 15 cm-1 (between 0.3-9 nm); overall, the vegetation variables play a more dominant role than atmospheric variables. This suggests the possibility to retrieve biophysical variables directly from at-sensor TOA radiance data. Particularly promising are leaf chlorophyll content, leaf water thickness and leaf area index, as these variables are the most important drivers in governing TOA radiance outside the water absorption regions. A software framework was developed to facilitate the development of retrieval models from at-sensor TOA radiance data. As a proof of concept, maps of these biophysical variables have been generated for both TOA (L1C) and bottom-of-atmosphere (L2A) Sentinel-2 data by means of a hybrid retrieval scheme, i.e., training GPR retrieval algorithms using the RTM simulations. Obtained maps from L1C vs L2A data are consistent, suggesting that vegetation properties can be directly retrieved from TOA radiance data given a cloud-free sky, thus without the need of an atmospheric correction
Identifying critical vegetation types for biodiversity conservation in the Americas
The Americas contain highly biodiverse yet vulnerable ecosystems, with many threatened species inadequately protected. Finer-scale, localized habitat assessments are crucial for effective conservation planning, but continental-scale high-resolution vegetation maps remain limited. This study addresses this gap by identifying critical vegetation types across the Americas using the standardized framework of the International Vegetation Classification (IVC) system at the macrogroup level, representing the finest vegetation classification available across the region, as well as the highest-resolution Area of Habitat (AOH) maps currently available for birds and mammals. By combining these high-resolution IVC macrogroup maps with detailed AOH maps, we highlight at-risk vegetation types based on 1) threatened and macrogroup-associated species (species that have at least 50% of their AOH in one macrogroup), 2) current protection levels, and 3) projected threats from land use changes, and 4) develop a conservation value index (CVI) that accounts for all these factors. The results highlighted the remarkable diversity of high conservation value macrogroups across the Americas, emphasizing their significance in regions such as the Andes, montane Mesoamerica, the Caribbean, Brazil's Cerrado, and the Atlantic Forest. Among the highest-scoring macrogroups, the Northern Andean Montane & Upper Montane Humid Forest emerged as critically important, harboring a high number of threatened and macrogroup-associated species. Other macrogroups of immediate conservation concern include the Brazilian Atlantic Montane Humid Forest, Pacific Mesoamerican Seasonal Dry Forest, Caribbean Lowland Humid Forest, and Central Midwest Oak Forest, Woodland and Savanna. However, the study revealed that nearly three-quarters of the over 300 macrogroups in the Americas fall below the global target of 30% protection. Notably, a fifth of all species were macrogroup-associated species, including over 40% of threatened species. Our findings emphasize the need for targeted conservation strategies that consider finer-scale habitat classifications and paired with high-quality species distribution data to guide conservation strategies for biodiversity across the Americas
Acceptance of near-natural greenspace management relates to ecological and socio-cultural assigned values among European urbanites
Grasslands are widespread elements of urban greenspace providing recreational, psychological and aesthetic benefits to city residents. Two urban grassland types of contrasting management dominate urban greenspaces: frequently mown, species-poor short-cut lawns and less intensively managed, near-natural tall-grass meadows. The higher conservation value of tall-grass meadows makes management interventions such as converting short-cut lawns into tall-grass meadows a promising tool for urban biodiversity conservation. The societal success of such interventions, however, depends on identifying the values urban residents assign to different types of urban grasslands, and how these values translate to attitudes towards greenspace management. Using 2027 questionnaires across 19 European cities, we identify the assigned values that correlate with people's personal greenspace use and their preferences for different types of urban grasslands to determine how these values relate to the agreement with a scenario of converting 50 of their cities� short-cut lawns into tall-grass meadows. We found that most people assigned nature-related values, such as wildness, to tall-grass meadows and utility-related values, such as recreation, to short-cut lawns. Positive value associations of wildness and species richness with tall-grass meadows, and social and nature-related greenspace activities, positively correlated with agreeing to convert short-cut lawns into tall-grass meadows. Conversely, disapproval of lawn conversion correlated with positive value associations of cleanliness and recreation potential with short-cut lawns. Here, people using greenspaces for nature-related activities were outstandingly positive about lawn conversion. The results show that the plurality of values assigned to different types of urban grasslands should be considered in urban greenspace planning. For example, tall-grass meadows could be managed to also accommodate the values associated with short-cut lawns, such as tidiness and recreation potential, to support their societal acceptance
Drivers of habitat availability for terrestrial mammals: Unravelling the role of livestock, land conversion and intrinsic traits in the past 50 years
The global decline of terrestrial species is largely due to the degradation, loss and fragmentation of their habitats. The conversion of natural ecosystems for cropland, rangeland, forest products and human infrastructure are the primary causes of habitat deterioration. Due to the paucity of data on the past distribution of species and the scarcity of fine-scale habitat conversion maps, however, accurate assessment of the recent effects of habitat degradation, loss and fragmentation on the range of mammals has been near impossible. We aim to assess the proportions of available habitat within the lost and retained parts of mammals' distribution ranges, and to identify the drivers of habitat availability. We produced distribution maps for 475 terrestrial mammals for the range they occupied 50 years ago and compared them to current range maps. We then calculated the differences in the percentage of 'area of habitat' (habitat available to a species within its range) between the lost and retained range areas. Finally, we ran generalized linear mixed models to identify which variables were more influential in determining habitat availability in the lost and retained parts of the distribution ranges. We found that 59% of species had a lower proportion of available habitat in the lost range compared to the retained range, thus hypothesizing that habitat loss could have contributed to range declines. The most important factors negatively affecting habitat availability were the conversion of land to rangeland and high density of livestock. Significant intrinsic traits were those related to reproductive timing and output, habitat breadth and medium body size. Our findings emphasize the importance of implementing conservation strategies to mitigate the impacts caused by human activities on the habitats of mammals, and offer evidence indicating which species have the potential to reoccupy portions of their former range if other threats cease to occur.This study investigates the impact of habitat degradation on terrestrial mammal species. By comparing historic and current distribution maps for 475 species, we found that 59% of them have less available habitat in their lost ranges, suggesting habitat loss contributed to range declines. Factors like land conversion to rangeland and high livestock density negatively affected habitat availability. Intrinsic traits such as reproductive timing, habitat breadth and medium body size also played a role. The study underscores the need for conservation efforts to mitigate human-induced habitat threats and identifies species that could potentially reclaim lost range if threats are addressed.imag
Factors determining variation in colour morph frequencies in invasive Harmonia axyridis populations
The Harlequin ladybird Harmonia axyridis Pallas, native to eastern Asia, is an invasive, non-native species that has recently achieved an almost worldwide distribution. A conspicuous feature of this species is colour polymorphism of the elytra. In its native area, the populations consist of a recessive non-melanic morph, several dominant melanic morphs and small numbers of other (rare) morphs. The morph proportions in native populations have been intensively studied and vary with geographic area, climate and time. In contrast, colour polymorphism in invaded regions has been little studied. We examine and try to account for the morph frequencies observed across the different invaded regions. In America, monomorphic populations consist of the non-melanic morphs while European populations contain also melanic morphs. In particular geographic areas of Europe, the average percentage of the non-melanic morphs varied between 78 and 99%. It was highest in the lowlands of northern Italy and central and northern Europe and decreased in the Alps and western (Spain, UK) and eastern (southeast Russia) margins of the recently invaded area. In central Europe the frequency of the non-melanic morphs decreased over the course of the year but increased over the years from 2010 to 2018. The local differences might thus arise through gradual change of the morph composition of the founder invasive, non-native population. However, the variation in non-melanic morph frequency was not correlated with climatic characteristics that might affect coccinellid polymorphism. The observed rate of change in morph proportions in our data was too small to explain the diversification of what was supposedly a uniform invasive, non-native population at the point of introduction
Symptom-related screening programme for early detection of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: the SYSPPE study
Background Chronic thromboembolic pulmonary hypertension (CTEPH) is the most severe long-term complication of acute pulmonary embolism (PE). We aimed to evaluate the impact of a symptom screening programme to detect CTEPH in PE survivors.Methods This was a multicentre cohort study of patients diagnosed with acute symptomatic PE between January 2017 and December 2018 in 16 centres in Spain. Patients were contacted by phone 2 years after the index PE diagnosis. Those with dyspnoea corresponding to a New York Heart Association (NYHA)/WHO scale≥II, visited the outpatient clinic for echocardiography and further diagnostic tests including right heart catheterisation (RHC). The primary outcome was the new diagnosis of CTEPH confirmed by RHC.Results Out of 1077 patients with acute PE, 646 were included in the symptom screening. At 2 years, 21.8% (n=141) reported dyspnoea NYHA/WHO scale≥II. Before symptom screening protocol, five patients were diagnosed with CTEPH following routine care. In patients with NYHA/WHO scale≥II, after symptom screening protocol, the echocardiographic probability of pulmonary hypertension (PH) was low, intermediate and high in 76.6% (n=95), 21.8% (n=27) and 1.6% (n=2), respectively. After performing additional diagnostic test in the latter 2 groups, 12 additional CTEPH cases were confirmed.Conclusions The implementation of this simple strategy based on symptom evaluation by phone diagnosed more than doubled the number of CTEPH cases. Dedicated follow-up algorithms for PE survivors help diagnosing CTEPH earlier.Thrombosis and Hemostasi
D2.3 EuropaBON Proposal for an EU Biodiversity Observation Coordination Centre (EBOCC)
Observations are key to understanding the state of nature, the drivers of biodiversity loss and the impacts on ecosystem services and ultimately on people. Many EU policies and initiatives call for unbiased, integrated and regularly updated data on biodiversity and ecosystem services. However, biodiversity monitoring efforts are spatially and temporally fragmented, taxonomically biased and not integrated across Europe. EuropaBON has addressed this gap by developing an EU-wide framework for biodiversity monitoring.
With this deliverable, EuropaBON proposes the terms of reference for an EU Biodiversity Observation Coordination Centre (EBOCC), a permanent infrastructure that could coordinate and foster the generation and use of high quality data to underpin the biodiversity knowledge-base used across EU policies, providing guidance and trainings when necessary. Such a centre represents one of the key solutions to overcome the critical challenges of biodiversity monitoring in Europe. Having this integrated and continuous monitoring capacity would allow more timely and efficient interventions that would optimise our capacity to revert biodiversity loss and prevent environmental degradation. It would also increase the value-added to the data flows, reaching high-value outputs with some existing low-value inputs.
This deliverable offers a critical analysis of the existing monitoring landscape in Europe, extracting key messages about
the main challenges, lessons learned and possible solutions. Based on a comprehensive analysis of needs and, most importantly, on an inclusive consultation process, the deliverable designs an EBOCC that tackles the key biodiversity monitoring challenges. The proposal specifies the mission, the tasks, the most urgent topics, the main policies and the key stakeholders that the EBOCC should serve and focus on during the first stage of its implementation. It also includes detailed analyses about governance models and potential costs.
With this proposal, EuropaBON fosters the setting up and testing an operational EBOCC that could address the urgent need for coordination, integration, harmonisation and strengthening of biodiversity data collection and analysis, in order to inform policy-making at local, national, European and international level
Rate and duration of hospitalisation for acute pulmonary embolism in the real-world clinical practice of different countries : Analysis from the RIETE registry
publishersversionPeer reviewe
Biodiversity monitoring in Europe: User and policy needs
To achieve the goals of the 2030 Global Biodiversity Framework, the European Biodiversity Strategy, and the EU Green Deal, biodiversity monitoring is critical. Monitoring efforts in Europe, however, suffer from gaps and biases in taxonomy, spatial coverage, and temporal resolution, resulting in fragmented and disconnected data. To assess user and policy needs in biodiversity monitoring, we employed a four-step user-centered stakeholder engagement process with over 300 stakeholders including a public stakeholder workshop, online survey, interviews, and a meeting with experts from 18 EU member states, the European Commission, and the European Environment Agency. The stakeholders identified policy needs, current challenges, and potential solutions. Based on the policy and stakeholder assessment, we recommend establishing a European Biodiversity Observation Coordinating Centre to optimize existing observation efforts, harmonize data, and enhance our ability to predict and respond to key challenges related to biodiversity loss in Europe
- …